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Malostranské nám. 2/25, Prague, Czech Republic

{muller|bartak}@ktiml.mff.cuni.cz
2 Faculty of Informatics, Masaryk University
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Abstract. The paper presents an iterative forward search framework for
solving constraint satisfaction and optimization problems. This frame-
work combines ideas of local search, namely improving a solution by
local steps, with principles of depth-first search, in particular extending
a partial feasible assignment towards a solution. Within this framework,
we also propose and study a conflict-based statistics and explanation-
based arc consistency maintenance. To show the versatility of the pro-
posed framework, the dynamic backtracking algorithm with maintaining
arc consistency is presented as a special instance of the iterative forward
search framework. The presented techniques are compared on random
constraint satisfaction problems and a real-life lecture timetabling prob-
lem.

1 Introduction

Many real-life industrial and engineering problems can be modeled as finite con-
straint satisfaction problems (CSP). A CSP consists of a set of variables associ-
ated with finite domains and a set of constraints restricting the values that the
variables can simultaneously take. In a complete solution of a CSP, a value is
assigned to every variable from the variable’s domain, in such a way that every
constraint is satisfied. Algorithms for solving CSPs usually fall into one of two
main families: systematic search algorithms and local search algorithms.

Most algorithms for solving CSPs search systematically through the possi-
ble assignments of values to variables. Such algorithms are guaranteed to find
a solution, if one exists, or to prove that the problem has no solution. They
start from an empty solution (no variable is assigned) that is extended towards
a complete solution satisfying all the constraints in the problem. Backtracking
occurs when a dead-end is reached. The biggest problem of such backtrack-based
algorithms is that they typically make early mistakes in the search, i.e., a wrong
early assignment can cause a whole subtree to be explored with no success. There



are several ways of improving standard chronological backtracking. Look-back
enhancements exploit information about the search which has already been per-
formed, e.g., backmarking or backjumping [6]. Look-ahead enhancements exploit
information about the remaining search space via filtering techniques (e.g., via
maintaining arc consistency described in [1, 2]) or variable and value ordering
heuristics [13]. The last group of enhancements is trying to refine the search tree
during the search process, e.g., dynamic backtracking [8].

Local search algorithms [13] (e.g., min-conflict [14] or tabu search [7]) per-
form an incomplete exploration of the search space by repairing an infeasible
complete assignment. Unlike systematic search algorithms, local search algo-
rithms move from one complete (but infeasible) assignment to another, typically
in a non-deterministic manner, guided by heuristics. In general, local search al-
gorithms are incomplete, they do not guarantee finding a complete solution sat-
isfying all the constraints. However, these algorithms may be far more efficient
(wrt. response time) than systematic ones in finding a solution. For optimization
problems, they can reach a far better quality in a given time frame.

In this paper, we present an iterative forward search (IFS) framework (based
on our earlier work published in [15]) to solve CSPs. This framework is close to
local search methods; however, it maintains a partial feasible solution as opposed
to the complete conflicting assignment characteristic of local search. Similarly
to local search, we process local changes in the solution. We also describe how
to extend the presented algorithm with dynamic maintenance of arc consistency
and conflict-based statistics. New conflict-based statistics is proposed to improve
the quality of the final solution. Conflicts during the search are memorized and
their potential repetition is minimized. The presented framework is very close to
local search algorithms, but unlike them, it can be easily refined into a dynamic
backtracking algorithm by enforcement of several basic rules.

There are several other approaches which try to combine local search meth-
ods together with backtracking based algorithms. For example, the decision re-
pair algorithm presented in [11] repeatedly extends a set of assignments (called
decisions) satisfying all the constraints, like in backtrack-based algorithms. It
performs a local search to repair these assignments when a dead-end is reached
(i.e., these decisions become inconsistent). After these decisions are repaired,
the construction of the solution continues to the next dead-end. Unlike this ap-
proach, our algorithm operates more like the local search method – it does not
execute a local search after a dead-end is reached but it applies the same local
steps during search. A similar approach is used in the algorithm presented in [18]
as well.

One of the primary areas to which we intended to apply the proposed algo-
rithm is a course timetabling problem at Purdue University (USA), described in
details in [17]. It is a real-life large-scale problem that includes features of over-
constrained as well as optimization problems. The goal is to timetable more than
800 lectures to a limited number of lecture rooms (about 50) and to satisfy as
many as possible individual course requests of almost 30,000 students. Moreover,
the algorithm should be able to react to additional changes, in particular, the



algorithm should be capable of repairing a modified timetable where some hard
constraints are violated by the user changes. IFS satisfies all these requirements
and as we will show later, it produces better solutions than existing approaches.

The paper is organized as follows. In the next section, we will describe the
iterative search algorithm formally. Special subsections will be devoted to ex-
tensions of IFS, namely conflict-based statistics and maintaining dynamic arc
consistency. After that, we will show how dynamic backtracking with maintain-
ing arc consistency [10] can be rewritten as a special instance of IFS. A short
summary of the implementation together with the experimental results for ran-
dom CSPs and a real-life timetabling problem will conclude the paper.

2 Iterative Forward Search Algorithm

The iterative forward search algorithm, that we propose here, is based on ideas
of local search methods [13]. However, in contrast to classical local search tech-
niques, it operates over feasible, though not necessarily complete solutions. In
such a solution, some variables can be left unassigned. Still all hard constraints
on assigned variables must be satisfied. Similarly to backtracking based algo-
rithms, this means that there are no violations of hard constraints.

Working with feasible incomplete solutions has several advantages compared
to the complete infeasible assignments that usually occur in local search tech-
niques. For example, when the solver is not able to find a complete solution,
an incomplete (but feasible) one can be returned, e.g., a solution with the least
number of unassigned variables found. Moreover, because of the iterative char-
acter of the search, the algorithm can easily start, stop, or continue from any
feasible solution, either complete or incomplete.

The search processeds iteratively (see Fig. 1 for algorithm). During each step,

procedure solve(initial) // initial solution is the parameter
iteration = 0; // iteration counter
current = initial; // current solution
best = initial; // best solution
while canContinue (current, iteration) do

iteration = iteration + 1;
variable = selectVariable (current);
value = selectValue (current, variable);
unassign(current, conflicting variables(current, variable, value));
assign(current, variable, value);
if better (current, best) then best = current

end while
return best

end procedure
Fig. 1. Pseudo-code of the search algorithm.

an unassigned or assigned variable is initially selected. Typically an unassigned
variable is chosen like in backtracking-based search. An assigned variable may be
selected when all variables are assigned but the solution is not good enough (for



example, when there are still many violations of soft constraints). Once a variable
is selected, a value from its domain is chosen for assignment. Even if the best
value is selected (whatever ‘best’ means), its assignment to the selected variable
may cause some hard conflicts with already assigned variables. Such conflicting
variables are removed from the solution and become unassigned. Finally, the
selected value is assigned to the selected variable.

The algorithm attempts to move from one (partial) feasible solution to an-
other via repetitive assignment of a selected value to a selected variable. During
this search, the feasibility of all hard constraints in each iteration step is enforced
by unassigning the conflicting variables. The search is terminated when the re-
quested solution is found or when there is a timeout, expressed e.g., as a maximal
number of iterations or available time being reached. The best solution found is
then returned.

The above algorithm schema is parameterized by several functions, namely
– the termination condition (function canContinue ),
– the solution comparator (function better ),
– the variable selection (function selectVariable ) and
– the value selection (function selectValue ).

Termination Condition. The termination condition determines when the al-
gorithm should finish. For example, the solver should terminate when the maxi-
mal number of iterations or some other given timeout value is reached. Moreover,
it can stop the search process when the current solution is good enough, e.g., all
variables are assigned and/or some other solution parameters are in the required
ranges. For example, the solver can stop when all variables are assigned and less
than 10% of the soft constraints are violated. Termination of the process by the
user can also be a part of the termination condition.

Solution Comparator. The solution comparator compares two solutions: the
current solution and the best solution found. This comparison can be based on
several criteria. For example, it can lexicographically order solutions according
to the number of unassigned variables (smaller number is better) and the number
of violated soft constraints.

Variable Selection. As mentioned above, the presented algorithm requires
a function that selects a variable to be (re)assigned during the current iteration
step. This problem is equivalent to a variable selection criterion in constraint
programming. There are several guidelines for selecting a variable [5]. In local
search, the variable participating in the largest number of violations is usually
selected first. In backtracking-based algorithms, the first-fail principle is often
used, i.e., a variable whose instantiation is most complicated is selected first. This
could be the variable involved in the largest set of constraints or the variable
with the smallest domain, etc.

We can split the variable selection criterion into two cases. If some variables
remain unassigned, the “worst” variable among them is selected, i.e., first-fail
principle is applied.



The second case occurs when all variables are assigned. Because the algorithm
does not need to stop when a complete feasible solution is found, the variable
selection criterion for such case has to be considered as well. Here all variables
are assigned but the solution is not good enough, e.g., in the sense of violated
soft constraints. We choose a variable whose change of a value can introduce the
best improvement of the solution. It may, for example, be a variable whose value
violates the highest number of soft constraints.

Value Selection. After a variable is selected, we need to find a value to be
assigned to the variable. This problem is usually called “value selection” in con-
straint programming [5]. Typically, the most useful advice is to select the best-fit
value. So, we are looking for a value which is the most preferred for the variable
and which causes the least trouble as well. This means that we need to find
a value with the minimal potential for future conflicts with other variables. For
example, a value which violates the smallest number of soft constraints can be
selected among those values with the smallest number of hard conflicts.

2.1 Conflict-based Statistics
Conflict-based statistics were successfully applied in earlier works [6, 11]. In our
approach, the conflict-based statistics works as an advice in the value selection
criterion. It helps to avoid repetitive, unsuitable assignments of the same value
to a variable by memorizing conflicts caused by this assignment in the past. In
contrast to the weighting-conflict heuristics proposed in [11], conflict assignments
are memorized together with the causal assignment which impacted them. Also,
we propose the presented statistics to be unlimited, to prevent short-term as
well as long-term cycles.

The main idea behind conflict-based statistics is to memorize conflicts and
prohibit their potential repetition. When a value v0 is assigned to a variable
V0, hard conflicts with previously assigned variables (e.g., V1 = v1, V2 = v2, ...
Vm = vm) can occur. These variables V1,...Vm have to be unassigned before the
value v0 is assigned to the variable V0. These unassignments, together with the
reason for their unassignment (e.g., assignment V0 = v0), and a counter tracking
how many times such an event occurred in the past, is stored in memory.

Later, if a variable is selected for an assignment again, the stored information
about repetition of past hard conflicts can be taken into account, e.g., in the value
selection heuristics. For example, if the variable V0 is selected for an assignment
again, we can weight the number of hard conflicts created in the past for each
possible value of the variable. In the above example, the existing assignment
V1 = v1 can prohibit the selection of the value v0 for the variable V0 if there is
again a conflict with the assignment V1 = v1.

Conflict-based statistics is a data structure that memorizes hard conflicts
which have occurred during the search together with their frequency (e.g., that
assignment V0 = v0 caused c1 times an unassignment of V1 = v1, c2 times of
V2 = v2 ... and cm times of Vm = vm). More precisely, it is an array

Stat[Va = va, Vb 6= vb] = cab,



saying that the assignment Va = va caused cab times unassignment of Vb = vb in
the past. Note that in case of n-ary constraints (where n > 2), this does not imply
that the assignments Va = va and Vb = vb cannot be used together. The pro-
posed conflict-based statistics does not actually work with any constraint, it only
memorizes the unassignments together with the assignment which caused them.
Let us consider a variable Va selected by selectVariable function, a value va

selected by selectValue . Once an assignment Vb = vb is selected by conflict-
ing variables to be unassigned, the array Stat[Va = va, Vb 6= vb] is incremented
by one.

The data structure is implemented as a hash table, storing information for
conflict-based statistics. A counter is maintained for the tuple A = a and B 6= b.
This counter is increased when the value a was assigned to the variable A and b
needed to be unassigned from B. The example of this structure

A = a ⇒


3×B 6= b
4×B 6= c
2× C 6= a

120×D 6= a

expresses that variable B lost its assignment b three times and its assignment c
four times, variable C lost its assignment a two times and D lost its assignment a
120 times, all because of later assignments of value a to variable A. This structure
is being used in the value selection heuristics to evaluate existing conflicts with
the assigned variables. For example, if there is a variable A selected and if the
value a is in conflict with an assignment B = b, we know that a similar problem
has already occurred 3× in the past, and the conflict A = a is weighted with
this number.

For example, a min-conflict value selection criterion, which selects a value
with the minimal number of conflicts with the existing assignments, can be
easily adapted to a weighted min-conflict criterion. The value with the smallest
sum of the number of conflicts multiplied by their frequencies is selected.

Stated in another way, the weighted min-conflict approach helps the value
selection heuristics to select a value that might cause more conflicts than an-
other value, but these conflicts occurred less frequently, and therefore they have
a lower weighted sum. This can considerably help the search to get out of a local
minimum.

We plan to study the following extensions of the conflict-based statistics:
– If a variable is selected for an assignment, the above presented structure can

also tell how many potential conflicts a value can cause in the future. In the
above example, we already know that four times a later assignment of A = a
caused that value c was unassigned from B. We can try to minimize such
future conflicts by selecting a different value of the variable B while A is still
unbound.

– The memorized conflicts can be aged according to how far they have occurred
in the past. For example, a conflict which occurred 1000 iterations ago can
have half the weight of a conflict which occurred during the last iteration or
it can be forgotten at all.



Let us study the space complexity of the above data structure for storing
conflict-based statistics. At a maximum, there could be a counter for each pair
of possible assignments Va = va and Vb = vb, where Va 6= Vb and there is a
constraint between variables Va and Vb which can prohibit concurrent assign-
ments Va = va and Vb = vb. However, note that each increment of a counter
in the statistics means an unassignment of an assigned variable. Therefore each
counter Stat[Va = va, Vb 6= vb] = n in the statistics means that there was an
assignment Vb = vb which was unassigned n times when va was assigned to Va.
Together with the fact, that there is only one assignment done in each iteration,
the following invariant will be always true during the search: The total sum of all
counters in the statistics plus the current number of assigned variables is equal
to the number of processed iterations. Therefore, if the above described hash
table (which is empty at the beginning and does not contain empty counters)
is used, the total number of all counters in it will never exceed the number of
iterations processed so far.

The presented approach can be successfully used in other search algorithms as
well. For example, in the local search, we can memorize the assignment Vx = vx,
which was selected to be changed (re-assigned). A reason for such selection can
be retrieved and memorized together with the selected assignment Vx = vx as
well. Note that typically an assignment which is in a conflict with some other
assignments is selected.

Furthermore, the presented conflict-based statistics can be used not only
inside the presented algorithm. Its constructed ‘implications’ together with the
information about frequency of their occurrences can be easily used by users or
by some add-on deductive engine to identify inconsistencies3 and/or hard parts
of the input problem. The user can then modify the input requirements in order
to eliminate the found problems and let the solver continue to search with such
a modified input problem.

2.2 Maintaining Arc Consistency Using Explanations
Because the presented algorithm works with partial feasible solutions, it can be
easily extended to dynamically maintain arc consistency during the search. This
can be done by using well known dynamic arc consistency (MAC) algorithms
(e.g., by AC|DC algorithm published in [16] or DnAC6 published in [4]) which
are widely used in Dynamic CSPs [12].

Moreover, since the only constraints describing assignments (constraint Vari-
able=value) can be added and removed during the search, approaches based on
explanations [9, 10] can be used as well. In this section, we present how these
explanations, which are traditionally used in systematic search algorithms, can
be used in our iterative forward search approach in order to maintain arc con-
sistency.

An explanation, Vi 6= vi ⇐ (V1 = v1&V2 = v2...&Vj = vj) describes that
the value vi cannot be assigned to the variable Vi since it is in a conflict with
3 Actually, this feature allows to discover all inconsistent inputs during solving the

Purdue University timetabling problem [17].



the existing assignments V1 = v1, V2 = v2, ... Vj = vj . This means that there
is no complete feasible assignment containing assignments V1 = v1, V2 = v2, ...
Vj = vj together with the assignment Vi = vi (these equalities form a no-good
set [9]).

During the arc consistency maintenance, when a value is deleted from a vari-
able’s domain, the reason (forming an explanation) can be computed and at-
tached to the deleted value. Once a variable (say Vx with the assigned value vx)
is unassigned during the search, all deleted values which contain a pair Vx = vx

in their explanations need to be recomputed. Such value can be either still in-
consistent with the current (partial) solution (a different explanation is attached
to it in this case) or it can be returned back to its variable’s domain. Arc con-
sistency is maintained after each iteration step, i.e., the selected assignment is
propagated into the not yet assigned variables. When a value vx is assigned to
a variable Vx, an explanation Vx 6= v′

x ⇐ Vx = vx is attached to all values v′
x of

the variable Vx, different from vx.
In the case of forward checking, computing explanations is rather easy. A value

vx is deleted from the domain of the variable Vx only if there is a constraint
which prohibits the assignment Vx = vx because of the existing assignments
(e.g., Vy = vy,..Vz = vz). An explanation for the deletion of this value vx is
then Vx 6= vx ⇐ (Vy = vy&...Vz = vz), where Vy = vy&...Vz = vz are assign-
ments contained in the prohibiting constraint. In case of arc consistency, a value
vx is deleted from the domain of the variable Vx if there is a constraint which
does not permit the assignment Vx = vx with other possible assignments of
the other variables in the constraint. This means that there is no support value
(or combination of values) for the value vx of the variable Vx in the constraint.
An explanation is then a union of explanations of all possible support values
for the assignment Vx = vx of this constraint which were deleted. The reason is
that if one of this support values is returned to its variable’s domain, this value
vx may be returned as well (i.e., the reason for its deletion has vanished, a new
reason needs to be computed).

As for the implementation, the above described algorithm schema (see Fig. 1)
can remain as it is, we only need to enforce arc consistency of the initial solution
and to extend unassign and assign methods. Procedure assign(solution, vari-
able, value) should enforce arc consistency of the solution with the selected as-
signment variable=value and the procedure unassign(solution, variable, value)
should ‘undo’ the assignment variable=value. It means that explanations of all
values which were deleted and which contain assignment variable = value in
their explanations needs to be recomputed. This can be done via returning all
these values into their variables’ domains followed by arc consistency mainte-
nance over their variables.

Using the presented explanations-based approach gives us more flexibility
than dynamic arc consistency algorithms (e.g., AC|DC, DnAC, ...) where the
value selection function can choose only among the values in the current domain
of the variable, i.e., among the values that are not pruned by arc consistency.
The values which were deleted via MAC can be selected as well (actually they are



only marked as no-good values in the implementation). If a deleted variable is
selected, it can become feasible by repeatedly unassigning a selected value from
its explanation until the value is returned to the selected variable’s domain. This
cannot be done as easily as in the case of dynamic arc consistency algorithms,
since we do not know the cause of deletion of a deleted value. For instance, there
are several possibilities how to treat a case when there is a variable with an empty
domain (i.e., all its values were deleted via MAC). We discuss two of them below,
see Sec. 4. Note that we might want to compute the largest feasible solution (in
the number of assigned variables) in case of over-constrained problem.

3 IFS as Dynamic Backtracking with MAC

In this section, we describe how the presented iterative forward search framework
can be used for modeling of dynamic backtracking (DB) search with the arc
consistency maintenance (MAC). In some sense, the presented IFS algorithm
with MAC can be seen as an extension of DB with MAC, e.g., described in [10],
towards the local search based methods.

Dynamic backtracking with MAC can come out of the above presented IFS
with MAC via the following modifications and/or restrictions:

– Variable selection function selectVariable always returns an unassigned
variable. If there are one or more variables with empty domains, one of them
is returned in the variable selection function.

– Value selection function selectValue always returns a value from the se-
lected variable’s domain (i.e., not-deleted value), if there is no such value, it
returns null.

– When all the variables are assigned the solver terminates and returns the
found solution (termination condition function canContinue ). In case of
branch&bound technique an existence of a complete solution should lower
the bound so that a conflict arises, which leads to some unassignments.

– If the selected value is null (which means that the selected variable has
an empty domain), a union of all assignments which prohibits all the values
of the selected variable (a union of assignments of all values’ explanations) is
computed. The last made assignment of them is selected (each variable can
memorize an iteration number, when it was assigned for the last time). This
assignment has to be unassigned, all other assignments from the computed
union are taken as an explanation for this unassignment. If the computed
explanation is empty (e.g., Vx 6= vx ⇐ ∅), the value can be permanently
removed from its variable’s domain because it can never be a part of a com-
plete solution. If the computed union is empty, there is no complete solution
and the algorithm returns fail.

– If a value vx is assigned to a variable Vx, an explanation Vx 6= v′
x ⇐ Vx = vx

is attached to all values from the domain of the variable Vx different from vx.
Note that in contrast to the IFS MAC algorithm described in the previous
section, the already deleted values from the variable’s Vx domain leave its
original explanation (it is not changed to Vx 6= v′

x ⇐ Vx = vx). This can be



done, because the last assigned variable from the variables which prohibits
values from a variable with an empty domain is always unassigned.

Like in the above presented IFS MAC algorithm, arc consistency maintenance
and its undo is called automatically after each assignment and unassignment,
respectively.

4 Experiments

The above described algorithm together with its presented extensions has been
implemented in Java. It contains a general implementation of the iterative search
algorithm. The general solver operates over abstract variables and values with
a selection of available extensions, basic general heuristics, solution comparators,
and termination functions. It may be customized to fit a particular problem
(e.g., as it has been extended for Purdue University timetabling, see Sec. 4.2) by
implementing variable and value definitions, adding hard and soft constraints,
and extending the parametric functions of the algorithm. The results presented
here were computed on 1GHz Pentium IIIm PC running Windows 2000, with
512 MB RAM and J2SDK 1.4.2.

Because we attempt to solve large scale problems, maintaining arc consis-
tency is based on AC3 algorithm (e.g., see [19]). In the Purdue University
timetabling problem we have almost 830 variables (there is a variable for each
course) with the total number of more than 200,000 values (there is a value for
each location of a course in the timetable, including a selection of time(s), room
and instructor). Furthermore, nearly every two variables are related by some
constraint, e.g., typically there is at least one room they can both use. Due to
the memory reasons, this prohibits any consistency method which is based on
memorizing values for each pair of values or for each pair of value and variable.

In the following experiments we compare several mutations of the above pre-
sented algorithm and its improvements. For all these variants, an unassigned
variable is selected randomly and the value selection is based on min-conflict
strategy. This means that a value is randomly selected among the values whose
assignment will cause the minimal number of conflicts with the existing assign-
ments. The search is terminated when a complete solution is found or when the
given time limit is reached. As for the solution comparator, a solution with the
highest number of assigned variables is always selected. The compared algorithms
are:

– IFS MCRW ... min-conflict selection of values with 2% random walk4

– IFS TABU ... tabu list of the length 20 is used to avoid cycling5

– IFS ConfStat ... min-conflict value selection where conflicts are weighted
according to the conflict-based statistics (as described in Sec. 2.1)

4 With the given probability, a value is selected randomly from all values of the selected
variable’s domain.

5 Repeated selection of the same pair (variable, value) is prohibited for the given
number of following iterations.



– IFS MAC ... arc-consistency maintenance; if there is a variable with an empty
domain, a variable which caused a removal of one or more of values is selected
and unassigned.6

– IFS MAC+ ... arc-consistency maintenance; the algorithm continues ex-
tending the solution even when there is a value with an empty domain. If
the selected variable has an empty domain (pruned by MAC) then one of
values deleted by MAC is selected (via min-conflic value selection).

– DBT MAC ... dynamic backtracking algorithm with arc consistency main-
tenance (as described in Sec. 3)

– DBT FC ... dynamic backtracking algorithm with forward checking

4.1 Random CSP

In this section, we present results achieved on the Random Binary CSP with
uniform distribution [3]. A random CSP is defined by a four-tuple (n, d, p1, p2),
where n denotes the number of variables and d denotes the domain size of each
variable, p1 and p2 are two probabilities. They are used to generate randomly
the binary constraints among the variables. p1 represents the probability that
a constraint exists between two different variables (tightness) and p2 represents
the probability that a pair of values in the domains of two variables connected
by a constraint are incompatible (density).

Figure 2 presents the number of assigned variables in percentage to all vari-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

44% 47% 50% 53% 56% 59% 62% 65% 68% 71% 74% 77% 80% 83% 86% 89%
Tightness

A
ss

ig
ne

d

IFS MCRW IFS TABU IFS ConfStat IFS MAC
IFS MAC+ DBT MAC DBT FC

DBT MAC

IFS MAC

DBT FC

IFS MAC+

IFS MCRW
IFS TABU

IFS ConfStat
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ables), the best achieved solution within 60 seconds, average from 10 runs.

6 This is done so that a value vx of such a variable with an empty domain Vx is
selected randomly and a randomly selected assignment from the explanation Vx 6= vx

is unassigned.



ables wrt. the probability p2 representing tightness of the generated problem
CSP (20, 15, 43%, p2). The average values of the best achieved solutions from 10
runs on different problem instances within the 60 second time limit are presented.

Each of the compared algorithms was able to find a complete solution within
the time limit for all the given problems with a tightness under 46%. Achieved
results from min-conflict random walk, tabu-list and the presented conflict-based
statistics seem to be very similar for this problem. Also, it is not surprising that
a usage of consistency maintenance techniques lowers the maximal number of as-
signed variables, e.g., both dynamic backtracking with MAC and IFS with MAC
extend an incomplete solution only when it is arc consistent with all unassigned
variables. As we can see from the Figure 2, we can get much better results when
we allow the search to continue even if there is a variable with an empty domain.

For the results presented in Figure 3, we turned the random CSP into an op-

0

50

100

150

200

250

300

350

400

450

10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20% 21% 22% 23% 24% 25%
Tightness

Va
lu

e

IFS MCRW IFS TABU IFS ConfStat IFS MAC
IFS MAC+ DBT MAC DBT FC

Fig. 3. minCSP (40, 30, 43%, p2), the sum of all assigned values of the best solution
within 60 seconds wrt. problem tightness, average from 10 runs.

timization problem where we are searching for a complete feasible solution with
the smallest total sum of the assigned values. Recall that each variable has d gene-
rated values from 0, 1, ...d−1. For the comparison we used CSP (40, 30, 43%, p2)
problems with the tightness p2 taken so that every measured algorithm was able
to find a complete solution for each of 10 different generated problems within
the given 60 second time limit. The min-conflict value selection criterion was
adapted to take the smallest value from the values which cause the minimum
number of conflicts. For DBT, the smallest value from a domain of a selected
variable was taken as well. As for conflict-based statistics, each value is weighted
by itself added to the number of weighted conflicts. For example, value 7 with
4 conflicts has a weight 7 + 4 = 11. If value 3 has 9 conflicts, so its weight is
12, then the value 7 will be preferred over 3. For all the measured algorithms,



the solver continues even if a complete solution is found until the time limit is
reached. A complete solution with the smallest sum of the assigned values is
then returned. For this problem, the presented conflict-based statistics was able
to give much better results than other compared algorithms. The algorithm is
obviously trying to stick much more with the smallest values than the others, but
it is able to find a complete solution since the conflict counters are rising during
the search. Such behaviour can be very handy for many optimization problems,
especially when optimization criteria (expressed either by some optimization
function or by soft constraints) go against the hard constraints.

Conclusion. For the tested random constraint satisfaction problems, IFS MAC
does not seem to be suitable: it produces very similar results to DBT MAC, but
unlike DBT MAC, it can not guarantee finding a complete solution, if one exists,
or to prove that the problem has no solution.

Since IFS MAC+ can continue extending a partial solution even when there
is a variable with an empty domain, it can produce much better results than
IFS MAC in case that the given problem is over-constrained (i.e., there is no
complete solution). For some tasks, it can be an interesting compromise between
backtrack-based search and local search.

For pure, not-optimization constraint satisfaction problems (e.g., results from
Fig. 2), the presented IFS with conflict-based statistics returns very similar re-
sults to other tested traditional local search principles preventing cycles (i.e.,
tabu-list and random walk). However the presented conflict-based statistics can
be very useful when optimization criteria are considered.

4.2 Real-Life Application: Purdue University Timetabling
In this section, we present some results achieved on the large lecture timetabling
problem from Purdue University. The following tests were performed on the
complete Fall 2004 data set7 which consists of 826 classes (forming 1782 meetings,
4050 half-hours) that must fit into 50 lecture rooms with capacities up to 474
students. In this problem, 89,633 course demands of 29,808 students must be
considered.

The timetable maps classes (students, instructors) to meeting locations and
times. A primary objective is to minimize the number of potential student course
conflicts which occur during this process. Other major constraints on the problem
solution are instructor availability and a limited number of rooms with sufficient
capacity, specific equipment, and a suitable location. Some of these constraints
must be satisfied; others are introduced within an optimization process in order
to avoid an over-constrained problem.

Figure 4 presents some results achieved with the presented framework. Ave-
rage values together with their RMS (root-mean-square) variances of the best
achieved solutions from 10 different runs found within 30 minute time limit are
presented. Time refers to the amount of time required by the solver to find the
presented solution.
7 Similar results were achieved also on a complete data set from Fall 2001, used in our

previous work [17].



Test cases IFS ConfStat IFS TABU IFS MCRW

Assigned variables [%] 100.00 ± 0.00 97.67 ± 0.15 98.29 ± 0.16

Time [min] 24.11 ± 4.42 24.17 ± 3.62 24.52 ± 3.83

Student conflicts [%] 1.97 ± 0.06 1.97 ± 0.07 2.05 ± 0.19

Preferred time [%] 85.64 ± 1.57 89.86 ± 0.69 89.63 ± 1.06

Preferred room [%] 50.39 ± 5.34 66.48 ± 3.42 64.84 ± 3.86

Fig. 4. Purdue University Timetable, characteristics for the best achieved solutions
within 30 minutes, average values and RMS variances from 10 runs.

The value selection criterion was extended to take into account three op-
timization criteria. Student conflicts give the percentage of unsatisfied require-
ments for the courses chosen by the students. One student conflict means that
there are two courses required by a student that cannot be both attended, e.g.,
because they overlap in time. Preferred time and preferred room estimate the sat-
isfaction of time and room preferences respectively. These preferences are given
by the instructors individually for each class. In our heuristics, room preferences
are considered much less important than time preferences and student conflicts.

IFS with conflict-based statistics was able to find a complete solution of
a good quality in each run; the first complete solution was found after 6 −
10 minutes. Moreover, it was able to significantly improve the first complete
solution with approximately 2.3% of violated student requirements and 80%
of time preferences satisfied. On the other hand, neither tabu search nor min-
conflict random walk were able to find any complete solution within the given 30
minute time limit; at least 17 variables for TABU and 12 variables for MCRW
remained unassigned after each run.

Dynamic backtracking with either MAC or FC (not included in Figure 4) was
able to assign in average approximately 93% of variables, with almost 3% violated
student requirements and only approximately 40% of time preferences satisfied.
IFS MAC was able to assign only about 65% of variables. IFS MAC+ assigned
about 94% variables, with approximately 2.2% student conflicts and around 75%
of time preferences. Consistency was maintained over all hard constraints.

We plan to use MAC+ only over the “additional” constraints, e.g. a prece-
dence constraint between two or more courses or not-overlap constraint between
a lecture and its seminars. However, the used data set contains only 203 of
such constrains, so there is no significant difference between a solution with and
without MAC+ (IFS ConfStat versus IFS ConfStat with MAC+ on additional
constraints). Currently we work on solving other Purdue University timetabling
problems where the number of these constraints significantly increases.

Conclusion. The general consensus, that local search is more suited for opti-
mization problems than backtrack-based search, is valid also for our large lecture
timetabling problem. Unlike the other tested algorithms, the presented conflict-
based statistics is capable to produce high quality and stable results. Further-
more, if there is any time available after the first complete solution is found, the
solver is also able to gradually improve this solution. We believe that the arc



consistency maintenance can help us solve some complicated situations which
can arise in our timetabling problem.

5 Conclusions and Future Work

We have presented a promising iterative forward search framework which is,
as we believe, together with the presented improvements, capable of solving
various constraint optimization problems. We have presented some results on
random CSP and on Purdue University timetabling problem. Our solver is able to
construct a demand-driven timetable, which satisfies approximately 98% course
requests of students together with about 85% of time preferences.

Our future research will include extensions of the proposed general algorithm
together with improvements to the implemented solver. We would like to do
an extensive study of the proposed framework and its possible application to
other, non timetabling-based problems. As for Purdue University timetabling,
we are currently extending the CLP solver [17] with some of the features included
here to present a fair comparison. However, the CLP solver was not yet able to
find a complete solution in the accomplished preliminary experiments.
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