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Abstract An examination timetabling problem at a large American university is pre-

sented. Though there are some important differences, the solution approach is based

on the ITC 2007 winning solver which is integrated in the open source university

timetabling system UniTime. In this work, nine real world benchmark data sets are

made publicly available and the results on four of them are presented in this paper.

A new approach to further decreasing the number of student conflicts by allowing some

exams to be split into multiple examination periods is also studied.

1 Introduction

Examination timetabling is a well researched and important educational timetabling

problem (Qu et al, 2009). It consists of individual meetings (examinations) that are to

be assigned in time and space in a way that allows all the participants (students and

instructors) to attend all the meetings that they require. The time is usually split into

a set of non overlapping time slots (examination periods) of equal or varying length,

and each examination needs to be assigned into one period that is of the same length or

longer than the exam. Similarly, an examination needs to take place in a room that is

big enough and there is usually only one examination in a room during one examination

period. Besides direct conflicts (when a student or instructor is required to attend two

examinations that are timetabled in same examination period) that need to be avoided

or minimized, there are various other optimization criteria that need to be considered.

For instance, it is often desired to avoid cases when a student needs to take an exam

during two consecutive examination periods or having too many examinations during

one day.

In this paper, we discuss a particular examination problem that is quite com-

mon at large American universities and that has been implemented in UniTime1.

UniTime is a comprehensive university timetabling application that covers both post-

enrollment (Rudová et al, 2011) and curriculum-based (Müller and Rudová, 2012)

Tomáš Müller
Space Management and Academic Scheduling, Purdue University
501 Northwestern Avenue, West Lafayette, USA
E-mail: muller@unitime.org

1 http://www.unitime.org



course timetabling, examination timetabling, student scheduling (Müller and Murray,

2010), and event management. Also, nine real world instances from Purdue University

are introduced in this work and made publicly available for benchmarking. This set

covers almost 5 years of experience using UniTime for examination timetabling at the

university (initially used in Fall 2008).

The examination problem at Purdue University is quite large. It consists of about

2,000 examinations, attended by up to 34,000 students with 120,000 student enroll-

ments, placed in 29 distinct examination periods and using about 350 rooms. It is

also quite hard to solve, as it is often impossible to find a complete timetable that

has no direct conflicts. There are also a few, but substantial, differences to what has

been studied so far (McCollum et al, 2012). For instance, multiple examinations in one

room during the same period are not allowed, however, some of the large examinations

require being split between multiple (usually up to 4) rooms. Also, two types of room

seating are considered. An examination may either require a normal (class-like) seat-

ing or a special examination seating arrangement. This means that each room has two

capacities: normal seating (usually equal to the number of chairs in a room) and exam-

ination seating (usually somewhere around half of the normal seating) which requires

no two students sitting next to each other. Besides minimizing the number of direct

conflicts, we also care about cases when a student has three or more examinations on

a day, and about cases when two exams are back-to-back (a student must attend two

exams that are on the same day in two consecutive periods). The more than two exam-

inations on a day conflict is considered almost as bad as a direct conflict since in both

cases a student may request an individual examination. In addition to these three types

of student conflicts, there are several additional constraints and optimization criteria,

like room availability and individual room and period preferences for an examination,

that need to be considered.

It is worth mentioning that the largest problem (named PUR93) in Carter’s famous

and widely used benchmark data set (Carter et al, 1996) is based on older data from

Purdue University. A solution to this problem using Carter’s problem representation

has never been used in practice at Purdue however.

The examination timetabling problem in UniTime is solved by an algorithm that

is an extension of the winning algorithm in the second International Timetabling

Competition2 (ITC2007) using our Constraint Solver Library (Müller, 2009). It uses

a constraint-based framework incorporating a series of algorithms based on local search

techniques that operate over feasible, though not necessarily complete, solutions. In

these solutions, some variables may be left unassigned, however, all hard constraints

on assigned variables must be satisfied. The library is written in Java and is publicly

available3 under GNU’s LGPL license.

The examination timetabling problem that has been studied in this work is de-

scribed in the following section. The algorithm used to solve this problem is discussed

next. The paper is concluded by a series of experiments on the four data sets collected

at Purdue during the last four semesters.

2 http://www.cs.qub.ac.uk/itc2007
3 http://cpsolver.googlecode.com



2 Examination Timetabling Problem

The examination timetabling problem consists of a set of non-overlapping examination

periods, a set of rooms, a set of examinations, and a set of distribution constraints.

Each examination period has defined a date, a start time and a length. It may

also have a penalty associated with it. These penalties can be overridden on individ-

ual exams and are used to penalize certain unpopular examination periods (e.g., late

evening or Saturday periods).

Each room has a normal and an examination seating capacity defined. A room

can have GPS coordinates and there is a room availability matrix, stating during

which periods a room can be used. Similarly as with examination periods, there can

be a penalty associated with using the room at a certain period. Room availability and

penalties can be expressed in a single two dimensional array containing infinite penalty

for cases when a room is not available for examination timetabling at a certain period

and an integer penalty otherwise. Note that we allow negative penalties which can be

used to prefer a certain room or period over the others.

penaltyrp(r, p) =

{
∞ room r not available at period p

x ∈ Z room r has a penalty of x at period p

Each examination has defined a length, type of seating, maximal number of rooms

into which it can be split (typically between 1 to 4), and a list of students enrolled in

the exam. Additionally, each exam has a list of available periods and rooms associated

with it. There can also be a penalty associated with each period or room of the exam

for using the given period or room respectively.

All penalties in UniTime are based on the following scale. The room penalty on

an examination is then computed by combining all such penalties set on individual

rooms, buildings, room features and groups of rooms. For instance, there can be

a penalty of -3 for a room with strongly preferred equipment that is located in a

discouraged building.

−4 strongly preferred

−1 preferred

0 neutral / no penalty

1 discouraged

4 strongly discouraged

∞ prohibited

A distribution constraint is set between two or more exams and it can be either

hard or soft. Hard constraints must be satisfied, soft constraints have a penalty that is

incurred when the constraint is violated. Distribution constraints are of the following

types:

– Same Room: Exams are required/expected to take place in the same room or

rooms.

– Different Room: Exams are required/expected to take place in different rooms

(no two exams of the constraint are to be placed in the same room).

– Same Period: Exams are required/expected to take place during the same periods.

– Different Period: Exams are required/expected to take place during different

periods.



– Precedence: Exams are required/expected to take place in the order they are

listed in the constraint. For instance if exam A is in the precedence constraint

before exam B, it is to be placed in a period that precedes the period in which

exam B is placed.

For more details, please see the XML format4 that is used to store the input data

as well as the resultant solution.

2.1 Hard Constraints

The following hard constraints need to be respected while assigning exams to exami-

nation periods and rooms:

– One At A Time: Only one exam can be placed in a room at any period.

– Room Availability: A room cannot be used during periods for which it is not

available. This means that no exam can be placed in a room r during a period p

when penaltyrp(r, p) =∞.

– Exam Availability: An exam cannot be placed in a period or a room that is not

available for the exam. This means that an exam e can not be placed in a period

where penaltyep(e, p) =∞ or into a room r where penaltyer(e, r) =∞.

– Exam Size: An exam must be placed in a room (or set of rooms) so that the overall

seating capacity of the rooms equals or is greater than the number of students

attending the exam, with respect to the requested seating type. This means that

an examination e can be assigned in rooms r1, r2, ..., rn only when∑
i=1,2,...,n

sizeseating(e)(ri) ≥ |students(e)|

where sizeseating(e)(ri) is the capacity of room ri of the seating requested by the

examination e (denoted seating(e)) and students(e) is the list of students enrolled

in the exam e.

– Max Rooms: Maximum number of rooms into which an exam can be split cannot

be exceeded.

– Hard Distributions: Hard distribution constraints must be satisfied.

Exams that do require to take place in the same room must be placed in different

examination periods as the Same Room constraint does not override the One At A

Time hard constraint. Similarly, exams that are to be placed in the same period can

not be placed in the same rooms.

2.2 Soft Constraints

During the search, besides looking for a complete solution (all exams are assigned to

periods and rooms) that satisfies all hard constraints mentioned above, the follow-

ing criteria are optimized. Each criterion has a weight associated with it (e.g., direct

conflicts have typically much higher weight that back-to-back conflicts), the overall

weighted sum of the following criteria is minimized.

4 http://www.unitime.org/exam_dataformat.php



– Direct Conflict: A student is enrolled in two exams that are placed in the same

period. If a student is attending three exams that are placed in the same period,

it is counted as three direct conflicts (there is a direct conflict for every pair of two

exams).

– More Than Two Exams A Day Conflict: A student is enrolled into three or

more exams that take place on the same day.

– Back-To-Back Conflict: A student is enrolled into exams that are scheduled in

consecutive periods (back-to-backs over an end of a day are not considered).

– Period Penalty: A penalization of an assignment of an exam into a period. It

is a combination of the penalty penaltyep(e, p) set on the exam e for a particular

period p and a default penalty that is set on the period itself penaltyp(p).

PeriodPenalty(e, p) = 2× penaltyep(e, p) + penaltyp(p)

The constant 2 in the equation is used to give the individual examination penalty

greater weight than the default penalty that is set on the period and applies to all

examinations assigned in that period.

– Room Penalty: A penalization of an assignment of an exam into a room. It

is a combination of the penalty penaltyer(e, ri) set on the examination e for a

particular room ri and the penalty penaltyrp(ri, p) set on the room ri for the

period p that is assigned. If an examination is assigned in two or more rooms

(r1, r2, ..., rn), the room penalty for the exam is a sum of the room penalties for

each of the assigned rooms.

RoomPenalty(e, p, r1, r2, ..., rn) =
∑

i=1,2,...,n

(2×penaltyer(e, ri)+penaltyrp(ri, p))

– Distribution Penalty: A penalty for a soft distribution constraint that is not

satisfied. It is usually either 1 for preferred constraints or 4 for strongly preferred

constraints.

– Room Split: A penalization for assigning an exam into multiple rooms. There is

penalty of 1 of splitting an exam into two rooms, 4 into three rooms, 9 into four

rooms. In general, it is (n − 1)2, where n is the number of rooms into which an

exam is assigned.

RoomSplit(e, r1, r2, ..., rn) =

{
0 n ≤ 1

(n− 1)2 n > 1

– Room Split Distance: A penalty for splitting an exam into rooms that are not

close to each other. If an exam is split into two or more rooms, it is the average

direct distance between these rooms. Distances are computed in meters between

rooms that have GPS coordinates provided.

RoomSplitDistance(e, r1, r2, ..., rn) =
2

n(n− 1)

∑
i,j∈{1,2,...,n};i<j

distance(ri, rj)

– Room Size: A penalty for using rooms that are too large for an exam. It is the

difference between the size of the room (either exam or normal seating based on

what is required by the exam) and the number of students enrolled in the exam. If

an exam is assigned into two or more rooms, it is the difference between the size of

the exam and the total sum of the room sizes in the seating type of the exam.



Between two exams, if it is desired to have a smaller exam in the smaller room

(assuming that both rooms are big enough for both exams), the Room Size penalty

can be raised to the power of some additional factor. For instance, with the room

size factor f = 1.1, having an exam of 30 students in a room of 100 would create a

penalization of (100− 30)1.1 = 107.06, instead of just 70.

RoomSize(e, r1, r2, ..., rn) = (
∑

i=1,2,...,n

sizeseating(e)(ri)− |students(e)|)
f

– Rotation Penalty: An exam can have an average period placement (computed

from previous examination problems) associated with it. If so, a penalty equal

to the square root of the multiplication of the current period index (i.e., 1, 2, ...,

29) and the average period placement is associated with each exam. This effectively

“rotates” the exam time placements by increasing the penalty on solutions in which

exams with historically late period assignments are placed in late periods again.

RotationPenalty(e, p) =
√
index(p)× average(e)

The average period placement average(e) of an exam e is computed as the average

of

– the period index of the exam during the previous semester indexp(e) and

– the average period placement value the exam had at that time averagep(e).

The period index of the exam during the previous semester is taken if the exam

did not have the average period placement set at that time.

average(e) =


0 e is a new exam

indexp(e) e was new in previous term
1
2 indexp(e) + 1

2averagep(e) otherwise

For example, if an exam is going to be timetabled in Fall 2012 for the fifth time,

the average period placement for the Fall 2012 examination timetabling problem

is computed from the assignment of the previous four Fall5 timetabling problems

(2008, 2009, 2010, and 2011) as follows:

average12(e) = index11(e)/2 + average11(e)/2

= index11(e)/2 + index10(e)/4 + average10(e)/4

= index11(e)/2 + index10(e)/4 + index09(e)/8 + index08(e)/8

This gives the more recent semesters more weight while keeping the older assign-

ments in mind as well.

– Large Exams Penalty: One for each large exam (an exam with more than a cer-

tain number of students enrolled) that is placed on or after a certain period

– Room Distance: If an examination was created for a particular class (as opposed

to the whole course), it is often desired for the exam to take place in the same

room where the class took place (called original room). This is modeled by having

a negative penalty of -4 on such a room and a penalty of -1 on all the other available

rooms of the same building as the original room. If other than the original room

is assigned to the exam, the Room Distance criterion measures the distance

between the assigned room and the original room. If the exam is in multiple rooms,

the average distance between the assigned rooms and the original room of the class

is used as a penalty for not having the original room assigned.

5 Since there are typically different courses offered in Spring and Fall, we usually consider
only semesters of the same season for the average periods.



2.3 ITC 2007

Following are the main differences between the examination timetabling problem de-

scribed in this paper and the examination problem of the first track of the second

International Timetabling Competition (ITC 2007). See (Müller, 2009) for more de-

tails about the application of the described algorithm on the competition instances.

– Direct student conflicts are allowed, but minimized. In the competition problem it

is not allowed for a student to have two exams at the same period.

– We do not allow two exams to share a room. On the other hand, an exam may be

split among multiple rooms.

– Rooms have two capacities, based on the seating (examination or normal seating).

– The presented problem allows for room and period restrictions and penalties that

can be set for individual exams. The room and period penalties of the competition

problem applies to all exams using the given room and/or period.

– Besides of direct and back-to-back student conflicts which are present in both prob-

lems, instead of the more than two exams on a day, the competition problem has

two exams on a day and a more general period spread. Period spread gives a penalty

when a student has two exams over a specified number of consecutive periods.

While there is no direct mapping between the two problems, there are a lot of

similarities as well. For the presented algorithm, the competition problems appear to

be harder in finding a complete solution. This is mostly because direct student conflicts

are not allowed. But there also seem to be less space available, which also corresponds

with the inability to split an exam into multiple rooms if needed and the general need

for some exams to share a room. On the other hand, the problems presented in this

work are considerably larger, in many cases with fewer examination periods, and the

exams seem to be more interlinked with students. As is shown in the experiments,

while disallowing direct student conflicts is certainly possible, it results in a dramatic

increase of back-to-back and more than two exams a day conflicts for students.

3 Algorithm

The search algorithm consists of several phases: In the first (construction) phase, a com-

plete solution is found using an Iterative Forward Search (IFS) algorithm (Müller,

2005). This algorithm makes use of Conflict-based Statistics (CBS) (Müller et al,

2004) to prevent itself from cycling. In the next phase, a local optimum is found using

a Hill Climbing (HC) algorithm. Once a solution can no longer be improved using this

method, the Great Deluge (GD) technique (Dueck, 1993) is used. The GD algorithm is

altered so that it allows some oscillations of the bound that is imposed on the overall

solution value. The search ends after a predetermined time limit has been reached. The

best solution found within that limit is returned.

3.1 Construction Phase

Initially, a complete solution is found using the Iterative Forward Search algorithm

(see Figure 1). It starts with all variables (examinations) being unassigned (Line 2).

During each iteration, an unassigned variable is selected (Line 4) and a value from its



domain is assigned to it (assignment of an examination period and a room or rooms). If

this causes any violations of hard constraints with existing assignments, the conflicting

variables are unassigned (Lines 5 - 7). For example, if there is another examination in

the selected room at the selected period, that exam will be unassigned. More precisely,

the function hardConflicts (Line 6) returns a subset γ of the solution σ, so that

there are no hard constraints violated between the remaining assignments σ\γ and the

new assignment {v/d} of the selected variable v (Line 4) with the selected value d (Line

5). The search ends when all exams are assigned or a time limit is reached (Line 3).

1: function construction()
2: σ = ∅
3: while not complete(σ) and not timeout do
4: v = selectVariable(σ)
5: d = selectValue(σ, v)
6: γ = hardConflicts(σ, v, d)
7: σ = σ\γ ∪ {v/d}
8: return σ

Fig. 1 Pseudo-code of the construction algorithm.

The search is also parametrized by variable and value selection criteria (Lines 4

and 5). The examinations are ordered based on the following criteria

– domain size: examinations with the smallest domain are assigned first

– highest degree: among exams with the same domain size, examinations with the

highest number of other exams that have at least one student in common with the

exam are assigned first

– examination size: among examinations with the same domain size and the number

of correlated exams, the largest examinations (in the number of students taking

the exam) are assigned first

If there are two or more unassigned exams with the same domain size, number of cor-

related exams and students, one is chosen randomly. For the selected variable, a value

whose assignment increases the overall cost of the solution the least is selected among

values that violate the smallest number of hard constraints (i.e., the number of con-

flicting variables that need to be unassigned in order to make the problem feasible after

assignment of the selected value to the selected variable is minimized). If there is a tie,

one of these is selected randomly. It does not go through the whole domain, but the

best possible room placement is selected for each of the available periods. If there is

no room placement that does not violate any hard constraint (e.g., all the big enough

rooms are already occupied by some other exams), a valid room assignment is selected

randomly.

Conflict-based Statistics is used during this process to prevent repetitive assign-

ments of the same values by memorizing conflicting assignments. Conflict-based Statis-

tics is a data structure that memorizes hard conflicts which have occurred during the

search together with their frequency and the assignments that caused them. More

precisely, it is an array

CBS [Va = va → ¬Vb = vb] = cab.

This means that the assignment Va = va has caused a hard conflict cab times in the

past with the assignment Vb = vb. Note that this does not imply that the assignments



Va = va and Vb = vb cannot be used together in the case of non-binary constraints. In

the value selection criterion, each hard conflict is then weighted by its frequency, i.e.,

by the number of past unassignments of the current value of the conflicting variable

caused by the selected assignment (see Figure 2).

1: function selectValue(σ, v)
2: α = ∅, pmin =∞, hmin =∞
3: for a in valuesToCheck(v) do
4: γ = hardConflicts(σ, v, a)
5: h =

∑
w/b∈γ (1 + CBS [v, a, w, b])

5: p = penalty(σ\γ ∪ {v/a})
6: if h < hmin or ( h = hmin and p ≤ pmin ) then
7: if h < hmin or ( h = hmin and p < pmin ) then α = ∅, hmin = h, pmin = p
8: α = α ∪ a
9: a = random(α)
10: for w/b in hardConflicts(σ, v, a) do
11: CBS [v, a, w, b] = 1 + CBS [v, a, w, b]
12: return a

Fig. 2 Pseudo-code of the value selection criterion using the Conflict-based Statistics.

If a complete solution is not found during the construction phase, it is very likely

due to an inconsistency in the input data. In such a case, the content of the Conflict-

based Statistics provides very valuable information back to the user which can be used

to identify the problematic hard constraint or constraints that need to be relaxed.

3.2 Hill Climbing Phase

Once a complete solution is found, a Hill Climbing algorithm is used in order to find

a local optimum (see Figure 3). In each iteration a change in the assignment of the

current solution is proposed by random selection from a problem-specific neighborhood

(Lines 4 - 5). The generated move is only accepted when it does not worsen the overall

solution value (i.e., the weighted sum of violated soft constraints, Lines 6 - 8). Only

changes that do not violate any hard constraints are considered. This rule applies

to the following phase as well. Neighbor assignments are also generated consistently

throughout all phases. That is, a problem specific neighborhood is selected randomly

and is used to generate a random change in the current solution.

1: function hc(σ)
2: Sbest = penaly(σ), idle = 0
3: while idle ≤ HCidle and not timeout do
4: n = random({PeriodChange,RoomChange,ExamSwap,RandomMove})
5: δ = generate(σ, n), S = penalty(σ ⊗ δ)
6: if S ≤ Sbest then
7: σ = σ ⊗ δ
8: if S < Sbest then idle = 0, Sbest = S
9: idle = idle+ 1
10: return σ

Fig. 3 Pseudo-code of the Hill Climbing algorithm.



The hill climbing phase is finished after a specified number HCidle of idle iterations

during which a solution has not improved (counted in variable idle on Figure 3). In all

the following experiments, the parameter HCidle was set to 25, 000.

3.3 Great Deluge Phase

The Great Deluge algorithm uses a bound B that is imposed on the overall value of the

current solution that the algorithm is working with (see Figure 4). This means that the

generated change is only accepted when the value of the solution after an assignment

does not exceed the bound (Lines 6 - 8). The bound starts at the value

B = GDub · Sbest

where Sbest is the overall value of the best solution found so far (Line 1), and GDub is a

problem specific parameter (upper bound coefficient, set to 1.05 in all the experiments).

The bound is decreased after each iteration (Line 9). This is done by multiplying the

bound by a cooling rate GDcr (set to 0.99999995 in all the experiments).

B = B ·GDcr

The search continues until the bound reaches a lower limit equal to GDlb
at · Sbest,

where GDlb is a parameter defining lower bound coefficient (set to 0.95 in all the

experiments). When this lower limit is reached, the bound is reset back to its upper

limit of GDub
at · Sbest (Lines 10-11).

B < GDlb
at · Sbest ⇒ B = GDub

at · Sbest

The parameter at is a counter starting at 1. It is increased by one every time the lower

limit is reached and the bound is increased. It is also reset back to 1 when a previous

best solution is improved upon. This helps the solver to widen the search when it

cannot find an improvement, allowing it to get out of a deep local minimum.

1: function gd(σ)
2: Sbest = penaly(σ), B = Sbest ·GDub, ω = σ, at = 1
3: while not timeout do
4: n = random({PeriodChange,RoomChange,ExamSwap,RandomMove})
5: δ = generate(σ, n), S = penalty(σ ⊗ δ)
6: if S ≤ B then
7: σ = σ ⊗ δ
8: if S < Sbest then Sbest = S, ω = σ, at = 1
9: B = B ·GDcr
10: if B < GDlb

at · Sbest then
11: B = GDub

at · Sbest, at = at+ 1
12: return ω

Fig. 4 Pseudo-code of the Great Deluge algorithm.



3.4 Neighborhoods

The following neighborhoods are selected with equal probability during the hill climbing

and great deluge phases. All of the proposed neighborhoods attempt to change an as-

signment of an exam or to swap the periods and/or rooms of two exams. If a change

cannot be made, it systematically searches for an alternate change by selecting the

next feasible assignment that follows the initially proposed change (i.e., it tries to use

one of the subsequent periods or rooms in the variable’s domain in the order they are

loaded from the input file) rather than randomly generating and checking some other

change.

3.4.1 Period Change

An examination and a new period are randomly selected. If no conflict results from

assigning the selected exam to the new period, the new assignment is returned. The

following periods are tried otherwise. The first available period is returned, another

neighborhood is tried if no such period can be found. For each period, it tries to keep

the existing room assignment, but if the room or rooms are not available, it tries to

find the best possible available room or rooms instead. If no such room assignment can

be found, the search continues with the following period.

The best possible room assignment is found by looking at all the rooms that are

available to the exam at a certain examination period, with the smallest number of

splits that does not violate any hard constraints (e.g., same room distribution con-

straint) and that minimizes the weighted sum of room penalty, number of violated soft

same / different room distribution constraints and the room split distance.

3.4.2 Room Change

An examination and a new room are randomly selected. A new placement is generated

by using the current period, the randomly selected room. If the selected room is not big

enough, some of the current rooms (but not all) are added into the room placement. If

no conflict results from assigning the selected exam into the new room assignment while

keeping its period assignment, the new assignment is returned. The other combinations

of rooms (if there are multiple using the randomly selected room and some of the current

ones) are tried otherwise. If there is no other combination, the search continues with

the following room.

3.4.3 Examination Swap

Two examinations are randomly selected. A new placement is generated by swapping

periods of the two exams. For each exam, the best possible room placement is found. If

the two exams are in the same period, it just tries to change the room assignments by

looking for the best available room placement ignoring the existing room assignments

of the two exams. If no conflict results from the swap the assignment is returned. The

following exams of the second exam in the pair are tried for an exam swap otherwise.



3.4.4 Random Move

An examination and a new period are randomly selected. The best possible room

assignment is found for the new period. If there is such a room assignment found and

no conflict results from assigning the selected exam to the new period and room(s),

the new assignment is returned. The following periods are tried otherwise.

4 Experiments

The following experiments were computed on an Apple MacBook Pro with a 3.06 GHz

Intel Core 2 Duo processor and 8 GB RAM, running Mac OS X 10.7.3 and Java 1.6.0.

In all the experiments the solver was given a time limit of two hours, and the average

values of ten independent runs are shown.

4.1 Data Instances

In this work, nine data sets were made available for benchmarking. They are all final

examinations problems from Purdue University, for each semester starting Fall 2008

when UniTime was used for examination timetabling at the university for the first time.

All the datasets can be downloaded at http://www.unitime.org/exam_datasets.php.

In this paper, the last four data sets are discussed. The results for the remaining data

set are available on the web site.

Problem Fall 2012 Spring 2012 Fall 2011 Spring 2011

Exams 1,864 1,798 1,914 1,866

Students 33,279 31,593 33,856 31,688

Enrollments 117,271 111,355 122,386 113,224

Distribution constraints 20 13 6 1

Exams fixed in time 57 63 58 99

Exams fixed in room 24 6 70 170

Large exams (600+) 22 20 18 17

Exams needing room split 10 9 20 13

Exams with original room 1,533 1,485 1,524 1,485

Density 3.28% 3.59% 3.46% 3.52%

Available periods 28.2± 0.4 28.0± 0.5 28.2± 0.4 27.5± 0.7

Available rooms 262.9± 6.1 265.8± 3.2 256.3± 9.8 234.7± 11.8

that are big enough 143.3± 38.5 143.3± 37.1 135.1± 40.1 126.6± 37.5

Table 1 Characteristics of the last four data sets.

Table 1 show the basic properties of the four latest datasets. The number of exami-

nations, students, student examination enrollments and the distribution constraints for

each data set are presented. All of the datasets have 29 examination periods, all 2 hours

long starting at 8 am, 10:30am, 1 pm, 3:30 pm, and 7 pm each day from Monday till

Saturday, except of the last period on Saturday (at 7 pm). All four Saturday periods



(8 am, 10:30am, 1 pm, and 3:30 pm) are strongly discouraged (penalty = 4), Friday

afternoon periods (1 pm, 3:30 pm, and 7 pm) are discouraged (penalty = 1).

In all problems there are only a few distribution constraints and all are marked

as hard (they cannot be violated). Moreover, in each problem, there are a few exams

pre-assigned in time and/or room. The number of large exams, those exams for 600

or more students, is not very high either, which is good as they all should fit within

the first 24 periods (excluding Saturday and the last period on Friday; the density

between these exams is over 80%). There are also a few exams in each problem that

need to be split into at least two rooms as there is no room big enough for the exam

in its domain, either because of the number of students in the exam or due to room

requirements that are put on the exam. The probability of a pair of two exams having

at least one student in common is shown in the density row. The last three rows show

the domain sizes of the problems, i.e., average number of available periods and rooms

to an exam. The last column only counts the rooms that are big enough for the exam

to fit in without the need to be split into multiple rooms. About 43% of all exams

require examination (alternative) seating.

Fall 2012 All ≥ 100 seats ≥ 200 seats ≥ 400 seats ≥ 600 seats

Rooms 347 30 (16) 12 (8) 7 (3) 2 (2)

Exams 1,864 (819) 248 (179) 87 (69) 37 (32) 22 (21)

Density 3.3% 29.6% 60.0% 81.2% 83.6%

Table 2 Number of rooms and exams for Fall 2012 of certain size.

There are about 350 rooms in the problem. Table 2 shows the tightness of the

problems for large examination rooms on the data set from Fall 2012. The numbers in

brackets denote rooms with examination seating of the given size or examinations re-

quiring examination seating with the given number of students. The density of common

students between exams increases dramatically for larger sized exams.

Assigning exams to examination periods while avoiding direct conflicts between

students can be seen as a graph coloring problem. Each examination can be repre-

sented as a vertex, with edges between two vertices where there is at least one student

in common between the two exams. Each color then correspond to one examination

period. The chromatic number of such a graph, which is the smallest number of col-

ors needed to color all the vertices in a way that there are no two vertices with the

same color connected with an edge, corresponds to the smallest number of examination

periods that are needed to create an examination timetable with no direct conflicts,

while still ignoring all the other hard constraints of the problem. Table 3 shows the

chromatic numbers for the graphs of the four data sets. It is interesting to see how the

chromatic number is decreased when edges between exams that contain only up to 1, 2

or 5 students in common are removed. With only 29 examination periods in the prob-

lem, and with other hard constraints thrown in, this makes finding a (direct) conflict

free schedule close to impossible. And, as we will show in Section 4.3, even having such

a conflict free timetable would be impractical as the number of other student conflicts

(primarily the more than two exams on a day conflicts) grows too high.



Problem All Edges > 1 student > 2 students > 5 students

Fall 2012 27 21 17 12

Spring 2012 27 19 17 12

Fall 2011 29 20 16 13

Spring 2011 29 21 17 12

Table 3 Chromatic number of a graph with edges between exams with at least one, two,
three, or six students in common.

4.2 Configurations

The data sets were tested on four different configurations. Solutions were measured

using a weighted sum of the violated soft constraints. The appropriate weights are

shown in the Table 4.

Weight production base color split

Direct Conflict 1,000 106 - 106

More Than 2 A Day 100 104 104 104

Back-To-Back 10 100 100 100

Period Penalty 1 1 1 1

Room Penalty 1 1 1 1

Room Split 10 10 10 10

Room Split Distance 0.01 0.01 0.01 0.01

Room Size (0.001x)1.1 (0.001x)1.1 (0.001x)1.1 (0.001x)1.1

Rotation Penalty 0.0001 0.0001 0.0001 0.0001

Large Exams Penalty 2.5 · 106 2.5 · 106 2.5 · 106 2.5 · 106

Room Distance 0.0001 0.0001 0.0001 0.0001

Hard Constraint Violation - - 1,000 -

Exam Period Split - - - 5,000

Table 4 Four weights configurations used in the experiments.

The production configuration contains the weights as they are used in practice by

the University. The base configuration gives more weight to direct student conflicts to

give a better comparison with the next two configurations. In the color configuration,

the graph coloring solution is used to construct an initial assignment of exams to periods

and rooms and it is not allowed to create a direct conflict. To be able to do this, however,

it was necessary to add the ability to break other hard constraints, namely the ability

to use a prohibited period or room by an exam or to break a distribution constraint.

It was still not allowed to have multiple examinations in the same room at the same

period, to exceed the room capacity, or to assign an exam into more than the given

maximal number of rooms.

The last configuration (named split) attempts to minimize the number of direct

conflicts by adding the ability to split an exam into two. In these runs, an additional

neighborhood was used (along with all the other neighborhoods mentioned above) that

allowed splitting a randomly selected examination into two, assigning each in a different

period, and moving students freely between these two exams if the improvement in the

weighted number of student conflicts (including direct, more than two on a day, and



back-to-backs) was higher than the penalization for splitting an exam Exam Period

Split. If a randomly selected exam was already split, the neighborhood also tried to

reshuffle the students between the two exams or merge the exams back together if the

split was no longer needed (i.e., the weighted sum of student conflicts avoided by the

split was smaller than the weight of the split).

4.3 Results

Results for all the runs are shown in the following tables. Table 5 shows the results

for the four data sets using production configuration. This is the configuration that

Config: production Fall 2012 Spring 2012 Fall 2011 Spring 2011

Direct Conflicts 79.7± 3.4 91.6± 5.8 107.2± 6.0 119.5± 6.5

More Than 2 A Day 345.2± 10.0 398.9± 11.9 448.2± 23.2 469.5± 7.9

Back-To-Back 4107.2± 74.5 4233.4± 51.5 4700.9± 94.5 4360.7± 65.9

Period Preference [%] 91.5± 0.3 91.5± 0.2 91.3± 0.3 91.0± 0.3

Room Preference [%] 74.3± 0.5 75.4± 0.5 70.1± 0.5 70.1± 0.4

Room Distance [m] 36.4± 2.1 35.2± 2.4 48.3± 2.9 48.9± 1.5

Room Split 43.0± 2.3 36.8± 1.9 94.6± 1.5 24.5± 1.4

Room Split Distance [m] 95.0± 11.3 69.4± 15.2 111.9± 12.9 48.1± 17.0

Room Size 72.3± 1.5 66.0± 2.8 52.7± 3.0 66.2± 1.9

Rotation Penalty 11.95± 0.05 12.09± 0.05 12.05± 0.07 11.95± 0.04

Large Exams Penalty 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

Table 5 Results using production configuration. Average results for 10 independent runs
are presented.

is used in practice at Purdue University. This gives a good proportion between direct

and more than two exams on a day conflicts. The table shows the total number of

direct student conflicts, more than two on a day conflicts and back-to-back conflicts. A

percentage of the overall satisfaction of all the period and room penalties are displayed

(100% would mean that all the examinations are assigned in a period or a room with the

smallest penalty). The period preferences mostly correspond to discouraging Friday

afternoon periods and strongly discouraging Saturday periods. The room preferences

mostly correspond to assigning exams to their original room (a room where the class

took place for all the class exams) or, if the room is not available, to the same building.

The average distance to the original room if the original room was not assigned is

shown in the Room Distance row. The number of exams being split into multiple

rooms is very close to the absolute number of splits that are needed to fit all the big

exams into available rooms. All the large exams were assigned before the last 5 periods.

The Rotation Penalty shows the average square root of the multiplication of the

average period index and the assigned period index (both starting from 1). This number

is minimized and it would be around 13.0 on average for an exam randomly assigned to

a period with no regards to the rotation. It is a little less than a half of the number of

examination periods (14.5 with 29 periods) as there are less exams timetabled during

the discouraged Friday afternoon and strongly discouraged Saturday periods than on

other (non discouraged) examination periods.



The effect of increasing direct conflict weight can be nicely seen in Table 6. The

increase in the number of more than two on a day and back-to-back conflicts is most

important. Impairment on other criteria is less profound.

Config: base Fall 2012 Spring 2012 Fall 2011 Spring 2011

Direct Conflicts 32.7± 3.9 50.2± 2.9 53.9± 4.8 73.1± 4.4

More Than 2 A Day 344.8± 26.6 383.6± 18.7 545.2± 26.8 559.0± 20.3

Back-To-Back 4792.1± 151.2 4945.7± 147.5 5823.3± 86.6 5431.3± 157.9

Period Preference [%] 88.2± 0.4 87.5± 0.2 87.2± 0.4 87.7± 0.5

Room Preference [%] 72.4± 0.3 73.8± 0.5 69.0± 0.6 69.3± 0.7

Room Distance [m] 40.7± 1.6 35.5± 1.5 48.9± 3.4 51.1± 1.8

Room Split 48.5± 8.9 35.4± 4.2 58.5± 3.8 29.1± 2.8

Room Split Distance [m] 82.7± 16.0 73.9± 15.7 67.8± 11.0 54.0± 7.8

Room Size 70.0± 3.8 68.0± 1.6 51.6± 2.9 68.8± 2.2

Rotation Penalty 12.22± 0.04 12.42± 0.05 12.28± 0.04 12.30± 0.06

Large Exams Penalty 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

Table 6 Results using base configuration. Average results for 10 independent runs are pre-
sented.

The configuration color with results in Table 7 was created in an attempt to bring

the number of direct student conflicts down even more. While it was not allowed to

Config: color Fall 2012 Spring 2012 Fall 2011 Spring 2011

Direct Conflicts 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

More Than 2 A Day 650.7± 38.0 663.3± 19.6 1152.6± 19.0 717.5± 20.6

Back-To-Back 6342.0± 133.5 6282.0± 94.5 6958.0± 145.1 6042.7± 82.0

Unavailable Period 12.7± 1.3 18.3± 0.9 17.4± 1.2 28.9± 1.3

Unavailable Room 10.8± 0.9 10.2± 1.0 22.6± 1.0 18.1± 1.8

Violated Distribution 2.8± 0.8 0.0± 0.0 0.0± 0.0 0.0± 0.0

Period Preference [%] 85.8± 0.3 86.3± 0.4 86.5± 0.3 86.7± 0.4

Room Preference [%] 72.5± 0.4 73.5± 0.4 69.3± 0.9 69.5± 0.6

Room Distance [m] 38.6± 2.6 38.5± 1.5 54.3± 3.8 55.2± 1.9

Room Split 19.8± 9.7 14.4± 5.4 30.7± 6.0 13.8± 5.1

Room Split Distance [m] 150.5± 65.0 137.1± 50.8 159.4± 46.6 167.0± 39.9

Room Size 77.5± 2.3 68.8± 2.9 54.6± 2.2 68.9± 3.9

Rotation Penalty 12.33± 0.05 12.64± 0.05 12.56± 0.04 12.40± 0.04

Large Exams Penalty 0.0± 0.0 0.0± 0.0 0.0± 0.0 2.0± 0.0

Table 7 Results using color configuration. Average results for 10 independent runs are pre-
sented.

create a direct conflict, it was allowed to assign an examination to a period or room

that was not available for the exam or to break a hard distribution constraint. Unlike

in all the other runs, the solver started from a graph coloring solution and each color

was randomly assigned to a period. Best available room or rooms were assigned to each

exam in the same order as the exams are taken during the construction phase of other

runs. After the construction phase the search resumed as with all the other runs (i.e.,



with the hill climbing phase), but it was not allowed to create any direct conflict during

the run. This means that only neighborhoods which did not create a direct student

conflict were allowed.

While there were no direct conflicts in any run using the color configuration, the

number of more than two exams on a day and back-to-back conflicts went up quite

substantially. The number of more than two exams on a day almost doubled compared

to the base runs and there were at least one thousand more back-to-backs in most of

the runs. Note that the number of hard constraint violations somewhat corresponds

to the number of direct conflicts we had in the runs using the base configuration. All

things considered, it is very interesting to see the effect of requiring a (direct) conflict

free examination schedule on the other criteria; however, the results are not usable in

practice, especially because of the broken hard constraints and the number of more than

two exams on a day. At Purdue, more than two exams on a day conflicts are almost

as bad as direct conflicts as in both cases a student is allowed to request an individual

examination, though some students do not request an individual examination because

of the number of exams on a day. Unfortunately, since a student with a conflict goes

directly to his / her professor, we have no statistics on how many students actually

do request an individual exam, but the numbers we are getting with the production

configuration seem to work quite well. Certainly, there are more complaints about

having Saturday exams than on student examination conflicts.

A different approach to further decreasing the number of student conflicts was

tried using the split configuration. Here the solver is allowed not only to split an exam

between multiple rooms, but also to split it between multiple examination periods. It

can be seen that the number of exams that were split roughly corresponds to the number

of direct conflicts somewhere in between the base and production configurations. This

is because most of the direct conflicts in the solutions are between exams that have one

or two students in common. On the other hand, allowing the solver to move students

with any conflict (including back-to-backs) in between the exams helps to decrease

the number of more than two on a day and back-to-back conflicts quite substantially.

Also, the solutions of the split configuration are very similar to the base configuration

solutions in all the other criteria, which are also shown in the Table 8.

Config: split Fall 2012 Spring 2012 Fall 2011 Spring 2011

Direct Conflicts 0.0± 0.0 7.0± 0.0 0.0± 0.0 1.0± 0.0

More Than 2 A Day 71.3± 11.6 90.9± 8.5 96.9± 39.0 87.9± 11.9

Back-To-Back 1802.7± 112.0 1934.9± 138.1 2001.2± 464.3 1721.5± 132.9

Period Splits 64.10± 3.54 75.60± 6.35 88.80± 9.13 83.30± 5.83

Period Preference [%] 88.6± 0.4 88.0± 0.3 87.8± 1.5 87.8± 0.3

Room Preference [%] 72.3± 0.7 73.8± 0.5 64.7± 11.3 67.6± 2.5

Room Distance [m] 40.4± 2.5 36.3± 2.0 68.4± 55.7 56.3± 11.1

Room Split 46.8± 3.6 37.1± 6.5 55.0± 12.8 31.2± 6.7

Room Split Distance [m] 41.0± 10.1 37.2± 12.6 63.2± 34.5 57.5± 19.2

Room Size 84.1± 6.3 74.3± 2.7 70.7± 14.9 79.6± 3.3

Rotation Penalty 12.19± 0.04 12.32± 0.05 12.34± 0.28 12.41± 0.08

Large Exams Penalty 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

Table 8 Results using split configuration. Average results for 10 independent runs are pre-
sented.



The ability to split an examination in periods is interesting and gives very promising

results. Besides the fact that the number of makeup exams (individual exams scheduled

for students with a direct or more than two on a day conflict) seems to correspond with

the automatically generated period splits, it can also be used to decrease the number of

exams that are now offered on Saturday, while keeping the number of student conflicts

on a manageable level. On the other hand, the need to offer certain exams during two

distinct examination periods has some drawbacks as well. For instance, students on the

second period can have some advantage over students taking the exam first.

Figure 5 shows how the quality of the computed solution improves during the

search. The average results of 10 independent runs of the Fall 2012 problem using

the production configuration are presented. The top most chart shows the Overall

Solution Value, which is the sum of all the violated soft constraints, each weighted

by the appropriate weight from the production configuration. This weighted sum is

minimized during the search. Each of the following charts shows one of the objectives.

The Large Exams Penalty is omitted from the list as this penalty was always zero

across all the runs due to its high weight.

For the Fall 2012 problem and the production configuration, the construction

phase did not take more than 10 seconds and the hill climbing phase was finished

within a minute. We can see the hill climbing phase before the short plateau at the

beginning of each chart. The hill climbing phase is particularly useful for setting the

initial bound of the following great deluge phase and starting the phase from a good

solution. Despite of that, it still takes about two minutes for the great deluge phase

to find a better solution. But the improvements are quite dramatic, especially in the

number of direct conflicts and more than two exams a day, which have the highest

weights. The other criteria get quite disturbed by these improvements at first (as

in many cases, decreasing the number of student conflicts goes against all the other

criteria). However, as the bound goes down, the other criteria get improved as well and

in about 10 minutes (when the bound reaches the lower limit for the first time) the

solution looks quite good in all of its characteristics. In fact, the Overall Solution

Value of the solution computed after the first 15 minutes is on average only about

6.5% higher than the overall value we get after the full two hours. On the other hand,

we can see small but steady improvements in the solution quality all the way during

the remaining search. The lower limit of the bound got reached 18 times on average

during the search and the counter at that widens the limits for the bound (see Figure 4)

did not get higher than 3.

The experiment also validates the current practice at Purdue University. While 15

to 30 minutes works well for all the trial runs that are done during the data entry (e.g,

to validate that the entered requirements do not over-constraint the problem or create

too many student conflicts), the two hour limit gives a good base for a production

timetable. Once a production timetable is created and published, there is rarely a need

for a new run. On the other hand, UniTime allows for manual modifications of the

timetable in an interactive mode, where the solver does not make any decisions but

it is used to provide alternatives and suggestions how to fix created problems. For

instance, if an operator wants to move an exam into a different room, it will provide

suggestions how to move the other affected exams around so that there are no hard

constraints violated and the quality of the modified solution (especially the number of

student conflicts) is maintained.
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Fig. 5 Progression of the best computed solution during the search. Each chart represents
one objective, the horizontal axe represents time in minutes. Average results of 10 independent
runs on the Fall 2012 problem using production configuration are presented.

5 Conclusion

In this paper, we have presented a real world examination timetabling problem and

an algorithm that was implemented in the university timetabling system UniTime.



Though we only have data from Purdue University at the moment, we believe it is

applicable to many other American universities (especially the larger ones that need

to deal with large exams offered to students across multiple curricula) and we plan

to extend the benchmark suite that was created in this work with data from other

institutions in the future. There are several other universities that are using UniTime

for examination timetabling or that are in the process of adopting UniTime.

From the research perspective, the ability to split an exam into multiple examina-

tion periods seems to be very interesting. As for the future work, several other features

have also been added recently to the examination solver; however, we do not have

enough data to publish results at the moment. For instance, besides being able to split

an exam into multiple rooms, it is now also possible to put multiple examinations into

one room during the same examination period. This room sharing ability is controlled

by a compatibility metrics that can be a part of the input data. For instance, only

certain rooms can be shared between multiple examinations, only exams that are of

the same length can share a room, and the room has to be big enough to hold all the

exams that are placed in there at the same time.
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Rudová H, Müller T, Murray K (2011) Complex university course timetabling. Journal

of Scheduling 14(2):187–207


