
Minimal Perturbation Problem
in Course Timetabling

Tomáš Müller1, Hana Rudová2 and Roman Barták1

1 Faculty of Mathematics and Physics, Charles University
Malostranské nám. 2/25, Prague, Czech Republic

{muller|bartak}@ktiml.mff.cuni.cz
2 Faculty of Informatics, Masaryk University
Botanická 68a, Brno 602 00, Czech Republic

hanka@fi.muni.cz

Abstract Many real-life problems are dynamic, with changes in the
problem definition occurring after a solution to the initial formulation
has been reached. A minimal perturbation problem incorporates these
changes, along with the initial solution, as a new problem whose solu-
tion must be as close as possible to the initial solution. A new iterative
forward search algorithm is proposed to solve minimal perturbation prob-
lems. Significant improvements to the solution quality are achieved by
including new conflict-based statistics in this algorithm. The proposed
methods were applied to find a new solution to an existing large scale
class timetabling problem at Purdue University, incorporating the initial
solution and additional input changes.

1 Introduction

Most existing solvers are designed for static problems. These problems can be
expressed, solved by appropriate means, and the solution applied without any
change to the problem statement. Many real-life problems [18, 11, 9, 16, 12],
however, are subject to change. Additional input requirements produce a new
problem derived from the original problem. The dynamics of such a problem may
require changes during the solution process, or even after a solution is generated.
In many real-life situations, it is necessary to alter the solution process so that
the dynamic aspects of the problem definition are taken into account.

Problem changes may result from changes to environmental variables, such
as broken machines, delayed flights, or other unexpected events. Users may also
specify new properties based on the solution found so far. The goal is to find
an improved solution for the user. Naturally, the problem solving process should
continue as smoothly as possible after any change in the problem formulation.
In particular, the solution of the altered problem should not differ significantly
from the solution found for the original problem. There are several reasons to
keep a new solution as close as possible to the existing solution. If the solution
has already been published, such as the assignment of gates to flights, frequent
changes would confuse passengers. Moreover, changes to a published solution



may necessitate other changes if initially satisfied wishes of users are violated by
the proposed changes. This may create an avalanche reaction.

In this paper we focus on handling dynamic changes in course timetabling.
In particular, our work is motivated by the class timetabling problem at Purdue
University [15]. Here timetables for each semester are created nearly a semester
in advance. Once timetables are published they require many changes based on
additional input. These changes must be incorporated into the problem solution
with minimal impact on any previously generated solution. Thus, the primary
focus of our work is to provide support for making minimal changes to the
generated timetable.

Our problem solver is based on constraint satisfaction techniques [4] which
are frequently applied to solve timetabling problems [7, 3, 15, 12]. Moreover,
dynamic constraint satisfaction [18, 11, 17] is able to cover dynamic aspects in
the problem. The minimal perturbation problem as defined in [1, 16] allows us
to express our desire to keep changes to the solution (perturbations) as small as
possible.

We introduce a new iterative forward search algorithm to solve the minimal
perturbation problem. It is based on our earlier work on solving methods for
the static (initial) problem [12]. The method also allows us to solve the initial
problem. The basic difference in application is that the optimization of the num-
ber of changes (perturbations) is not included while solving the initial problem.
Our algorithm is close to local search methods [10]; however, it maintains partial
feasible assignments as opposed to the complete conflicting assignments charac-
teristic of local search. Similar to local search, we process local changes in the
assignment. This allows us to generate a complete solution and to improve the
quality of the assignment at the same time.

New conflict-based statistics are proposed to improve the quality of the final
solution. Conflicts during the search are memorized and their potential repetition
is minimized. Conflict-based heuristics have been successfully applied in earlier
works [5, 8]. In our approach, the conflict-based statistics work as advice in the
value selection criterion. They help to avoid repetitive, unsuitable assignments of
the same value to a variable by memorizing conflicts caused by this assignment
in the past. The proposed heuristics do not limit the number of conflicts and
assignments that are memorized. We have extended our search algorithm using
these conflict-based statistics. Note, however, that this is a general strategy that
can be applied in other problem solvers.

The paper is organized as follows. Section 2 describes the timetabling problem
at Purdue University that motivates our work. The subsequent section introduces
the minimal perturbation problem and surveys related works on dynamic prob-
lems. Section 4 describes the iterative forward search algorithm. The subsequent
section introduces conflict-based heuristics and defines how they have been in-
cluded in the search algorithm. The solution of our class timetabling problem is
discussed in Section 6. A short summary of the implemented system, along with
experimental results for the initial and minimal perturbation problems, conclude
the paper.



2 Motivation – Timetabling Problem

The primary purpose of our work is to solve a real timetabling problem at
Purdue University (USA). Here the timetable for large lecture classes is con-
structed by a central scheduling office in order to balance the requirements of
many departments offering large classes that serve students from across the
university. Smaller classes, usually focused on students in a single discipline, are
timetabled by “schedule deputies” in the individual departments. Such a complex
timetabling process, including subsequent student registration, takes a rather
long time. Initial timetables are generated about half a year before the semester
starts. The importance of creating a solver for a dynamic problem increases with
the length of this time period and the need to incorporate the various changes
that arise.

Rescheduling of classes in the timetable for large lectures is the primary fo-
cus of this paper. This problem consists of about 830 classes (forming almost
1800 meetings) having a high density of interaction that must fit within 50 lecture
rooms with capacities up to 474 students. Room availability is a major constraint
for Purdue. Overall utilization of the time available in rooms exceeds 78%; more-
over, it is around 94% for the four largest rooms. About 90,000 course requests
by almost 30,000 students must also be considered. 8.4% of class pairs have at
least one student enrollment in common.

The timetable maps classes (students, instructors) to meeting locations and
times. A major objective in developing an automated system is to minimize the
number of potential student course conflicts which occur during this process.
This requirement substantially influences the automated timetable generation
process since there are many specific course requirements in most programs of
study offered by the University.

To minimize the potential for time conflicts, Purdue has historically sub-
scribed to a set of standard meeting patterns. With few exceptions, 1 hour ×
3 day per week classes meet on Monday, Wednesday, and Friday at the half hour
(7:30, 8:30, 9:30, ...). 1.5 hour × 2 day per week classes meet on Tuesday and
Thursday during set time blocks. 2 or 3 hours × 1 day per week classes must
also fit within specific blocks, etc. Generally, all meetings of a class should be
taught in the same location. Such meeting patterns are of interest to the problem
solution as they allow easier changes between classes having the same or similar
meeting patterns.

Currently, the timetable for Purdue University is constructed by a manual
process. We have proposed an automated timetabling system to solve the initial
problem [15]. This solution was based on constraint logic programming (CLP)
with soft constraints. The CLP solver is currently undergoing comparison with
the new solver described in this paper.

3 Minimal Perturbation Problem and Related Works

Dynamic problems appear frequently in real-life planning and scheduling ap-
plications where the task is to “minimally reconfigure schedules in response to



a changing environment”[16]. Dynamic changes in the context of timetabling
problems were first studied in [6]. Issues of interactive timetabling which needs
to handle dynamic aspects of the problem were discussed in [3, 13, 12]. A sur-
vey of existing approaches to dynamic scheduling can be found in [9]. In an
annotated bibliography included in the CP 2003 tutorial on dynamic constraint
solving [17], it is notable that only four papers were devoted to the problem of
minimal changes. An extended version of this tutorial will be published in [18].
The minimal perturbation problem was described formally in [16] and solved by
a combination of linear and constraint programming. We have extended this def-
inition in [1] and proposed a solution algorithm based on the Branch&Bound
algorithm. An algorithm inspired by heuristic repair and limited discrepancy
search has also been proposed in [14].

To define the minimal perturbation problem, we will consider an initial (orig-
inal) problem, its solution, a new problem, and some distance function which
allows us to compare solutions of the initial and the new problem. Subsequently
we look for a solution of the new problem with minimal distance from the initial
solution. Let us now look at particular components (for detail information look
at [1]).

We can define both the initial and the new problem as a constraint satisfac-
tion problem (CSP) [4]. It is a triple (V,D,C) where V is a finite set of variables,
D is a set of possible values for variables (domain), and C is a finite set of con-
straints restricting the values of variables. A solution to a CSP is a complete
assignment of the variables that satisfies all the constraints.

A distance function can be defined with the help of perturbations [1, 16, 14].
A perturbation is a variable that has a different value in the solutions of the initial
and the new problem. Some perturbations must be present in each new solution.
So called input perturbation means that a variable must have different values in
the initial and changed problem because of some input changes (e.g., a course
must be scheduled at a different time in the changed problem). The distance
function can be defined as the number of additional perturbations. They are
given by subtraction of the final number of perturbations and the number of
input perturbations.

4 Iterative Forward Search Algorithm

In this section, an iterative forward search algorithm and its general setting are
presented. It is based on local search methods [10], but in contrast to classi-
cal local search techniques, it operates over a feasible, though not necessarily
complete, solution. In such a solution, some variables can be left unassigned;
however, all hard constraints on assigned variables must be satisfied. Similar to
backtracking-based algorithms, this means that there are no violations of hard
constraints.

Working with feasible incomplete solutions has several advantages compared
to the complete infeasible solutions that usually occur in local search techniques.
For example, when the solver is not able to find a complete solution, a feasible



one can be returned, e.g., a solution with the least number of unassigned vari-
ables found. Especially in interactive timetabling applications, such solutions are
much easier to visualize, even during the search, since no hard constraints are
violated. For instance, two lectures never use a single resource (e.g., a classroom)
at the same time. Moreover, because of the iterative character of the search, the
algorithm can easily start, stop, or continue from any feasible solution, either
complete or incomplete.

The search is processed iteratively (see Fig. 1 for the algorithm). During each

procedure solve(initial) // initial solution is the parameter
iteration = 0; // iteration counter
current = initial; // current solution
best = initial; // best solution
while canContinue (current, iteration) do

iteration = iteration + 1;
variable = selectVariable (current);
value = selectValue (current, variable);
unassigned = conflicting variables(current, variable, value);
unassign(current, unassigned);
assign(current, variable, value);
if better (current, best) then best = current

end while
return best

end procedure
Figure 1. Pseudo-code of the search algorithm.

step, either an unassigned or an assigned variable may be selected. Typically an
unassigned variable is chosen. An assigned variable may be selected when all
variables are assigned but the solution is not good enough, for example when
there are still many violations of soft constraints. Once a variable is selected,
a value from its domain is chosen for assignment. Even if the ‘best’ value is
selected, its assignment to the selected variable may cause some hard conflicts
with already assigned variables. Such conflicting variables are removed from the
solution and become unassigned. Finally, the selected value is assigned to the
variable. The search is terminated when the desired solution is found or when
there is a timeout, expressed e.g., as a maximal number of iterations or available
time being reached. The best solution found is then returned.

Each current solution must be feasible at all times, but an assignment of
a value to a variable may cause conflicts with other variables. For example, let
the values of variables A, B and C must be different, and variable A is assigned
the value 3. When variable B, together with the value 3, are selected during
the following step, the value of A becomes unassigned during the assignment
B = 3. In our algorithm, the function conflicting variables computes the
set of conflicting variables that will be unassigned in the subsequent step.

The above algorithm schema is parameterized by several functions, namely



– the variable selection (function selectVariable ),
– the value selection (function selectValue ),
– the termination condition (function canContinue ) and
– the solution comparator (function better ).

These functions are discussed in the following sections.

Termination Condition. The termination condition determines when the al-
gorithm should finish. For example, the solver should terminate when the maxi-
mum number of iterations or another given timeout value is reached. Moreover,
it can stop the search process when the current solution is good enough (e.g., all
variables are assigned and/or some other solution parameters are in the required
ranges). As an example, the solver can stop when all variables are assigned and
less than 10% of soft constraints are violated. The user may also terminate the
process.

Solution Comparator. The solution comparator compares two solutions: the
current solution and the best solution found. This comparison can be based on
several criteria. For example, it can lexicographically order solutions according
to the following criteria: the number of unassigned variables (a smaller num-
ber is better) or the number of violated soft constraints. Soft constraints can
be weighted according to their importance and/or preferences. Then, a sum of
weights of violated soft constraints can be used as the second criterion.

Variable Selection. As mentioned above, the presented algorithm requires
a function that selects a variable to be (re)assigned during the current iteration
step. This problem is equivalent to a variable selection criterion in constraint
programming. There are several guidelines for selecting a variable [4]. In local
search, the variable participating in the largest number of violations is usually
selected first. In backtracking-based algorithms, the first-fail principle is often
used, i.e., a variable whose instantiation is most complicated is selected first. This
could be the variable involved in the largest set of constraints or the variable
with the smallest domain, etc.

The variable selection criterion is split into two cases. If some variables remain
unassigned, the first-fail principle can be applied as the basis for selection. Other
choice could be the random selection of the unassigned variable. Because the
algorithm does not need to stop when a complete feasible solution is found, the
second case occurs when all variables are assigned but the solution does not meet
the termination condition. Here we choose the variable for which a change of its
value appears to offer the best opportunity for improvement of the solution. This
may be, for example, a variable whose value violates the highest number of soft
constraints.



Value Selection. After a variable is selected, we need to find a value to be
assigned. This problem is usually called “value selection” in constraint program-
ming [4]. Typically, the most useful advice is to select the best-fit value. So,
we are looking for a value which is the most preferred for the variable and also
which causes the least trouble during the future search. This means that we need
to find a value with minimal potential for future conflicts with other variables.
Note that we are not using constraint propagation explicitly in our algorithm.
However, the power of constraint propagation can be substituted to some extent
by sophisticated value selection. It can take into account possible future conflicts
by analyzing the past conflicts.

For example, a value which violates the smallest number of soft constraints
among values with the smallest number of hard conflicts (i.e., the values whose
assignment to the selected variable violate the smallest number of hard con-
straints) can be selected.

4.1 Adjustment for Solving A Minimal Perturbation Problem

Despite the local search nature of the IFS algorithm, there are some adjustments
needed to effectively solve the MPP. The goal of these adjustments is to minimize
the number of additional perturbations. The easiest way to do this is to adopt
variable and value selection heuristics that prefer the previous assignments (but
not always, to avoid cycling).

For example, value selection heuristics can be adopted to select the initial
value (if it exists) randomly with a probability Pinit (it can be rather high, e.g.,
50-80%). In cases where the initial value is not selected, original value selection
can be applied. Also, if there is an initial value in the set of best-fit values (e.g.,
among values with the minimal number of hard and soft conflicts), the initial
value can be preferred here as well. Otherwise, a value can be selected randomly
from the constructed set of best-fit values. A disadvantage of such heuristics
is that the probability Pinit has to be selected carefully: if it is too small, the
search can easily move away and the number of additional perturbations will
grow during the search. If it is too high, the search will stick too much with the
initial solution and, if there is no solution with a small number of additional
perturbations, it will be hard to find a feasible solution. We have achieved the
best results using this probability Pinit of around 60% (see Section 7.2 for details).

Variable selection heuristics can also assist in finding a solution with a small
number of perturbations. For example, when all variables are assigned, a variable
that is not assigned its initial value should be selected (e.g., randomly among all
variables that are not assigned their initial values), and that participates in the
highest number of violated soft constraints.

5 Conflict-based Statistics

In this section, a very promising extension of the iterative forward search al-
gorithm is presented. The idea behind it is to memorize conflicts and to avoid



their potential repetition. When a value v0 is assigned to a variable V0, hard
conflicts with previously assigned variables (e.g., V1 = v1, V2 = v2, ... Vm = vm)
may occur. These variables V1,...,Vm have to be unassigned before the value v0

is assigned to the variable V0. These unassignments, together with the reason for
their unassignment (i.e., the assignment V0 = v0), and a counter tracking how
many times such an event occurred in the past, is stored in memory.

Later, if a variable is selected for assignment again, the stored information
about repetition of past hard conflicts can be taken into account, e.g., in the value
selection heuristics. Assume that the variable V0 is selected for an assignment
again (e.g., because it became unassigned as a result of a later assignment), we
can weight the number of hard conflicts created in the past for each possible
value of this variable. In the above example, the existing assignment V1 = v1

can prohibit the selection of value v0 for variable V0 if there is again a conflict
with the assignment V1 = v1.

Conflict-based statistics are a data structure which memorizes the number of
hard conflicts that have occurred during the search (e.g., that assignment V0 = v0

resulted c1 times in an unassignment of V1 = v1, c2 times of V2 = v2, . . . and cm

times of Vm = vm). More precisely, they form an array

CBS[Va = va, Vb 6= vb] = cab,

stating that the assignment Va = va caused the unassignment of Vb = vb a total
of cab times in the past. Note that in case of n-ary constraints (where n > 2),
this does not imply that the assignments Va = va and Vb = vb cannot be used
together. The proposed conflict-based statistics do not actually work with any
constraint, they only memorize unassignments and the assignment that caused
them. Let us consider a variable Va selected by the selectVariable function and
a value va selected by selectValue . Once the assignment Vb = vb is selected by
conflicting variables to be unassigned, the array cell CBS[Va = va, Vb 6= vb]
is incremented by one.

The data structure is implemented as a hash table, storing information for
conflict-based statistics. A counter is maintained for the tuple A = a and B 6= b.
This counter is increased when the value a is assigned to the variable A and b is
unassigned from B. The example of this structure

A = a⇒


3×B 6= b
4×B 6= c
2× C 6= a

120×D 6= a

expresses that variable B lost its assignment b three times and its assignment c
four times, variable C lost its assignment a two times, and D lost its assignment a
120 times, all because of later assignments of value a to variable A. This structure
is being used in the value selection heuristics to evaluate existing conflicts with
the assigned variables. For example, if there is a variable A selected and if the
value a is in conflict with the assignment B = b, we know that a similar problem



has already occurred 3× in the past, and hence the conflict A = a is weighted
with the number 3.

Then, a min-conflict value selection criterion, which selects a value with the
minimal number of conflicts with the existing assignments, can be easily adapted
to a weighted min-conflict criterion. The value with the smallest sum of the
number of conflicts multiplied by their frequencies is selected.

Stated in another way, the weighted min-conflict approach helps the value
selection heuristics to select a value that might cause more conflicts than another
value, but these conflicts occurred less frequently, and therefore they have a lower
weighted sum. As we will show in Section 7.1, this can help considerably with
getting the search algorithm out of a local optimum.

Extensions. The presented approach can be successfully applied in other search
algorithms as well. For example, in the local search, we can memorize the assign-
ment Vx = vx, which was selected to be changed (re-assigned). A reason for such
selection can be retrieved and memorized together with the selected assignment
Vx = vx as well. Note that typically an assignment which is in a conflict with
some other assignments is selected.

Furthermore, the presented conflict-based statistics can be used not only
inside the solving mechanism. The constructed ‘implications’ together with the
information about frequency of their occurrences can be easily accessed by users
or by some add-on deductive engine to identify inconsistencies1 and/or hard
parts of the input problem. The user can then modify the input requirements in
order to eliminate problems found and let the solver continue the search with
this modified input problem.

6 Solution for Timetabling Problem

In this section we will discuss an application of the above described algorithm
for the large lecture timetabling problem at Purdue University. The modeling
part will be described first, followed by the description of the algorithm.

6.1 Problem Representation

Due to the set of standardized time patterns and administrative rules in place
at the university, it is generally possible to represent all meetings of a class
by a single variable. This tying together of meetings considerably simplifies the
problem constraints. Most classes have all meetings taught in the same room,
by the same instructor, at the same time of day. Only the day of week differs.
Moreover, these days and times are mapped together with the help of meeting
patterns, e.g., a 2 hours × 3 day per week class can be taught only on Monday,
Wednesday, Friday, beginning at 5 possible times (7:30, 9:30, 11:30, 1:30, 3:30).

1 Actually, this feature allows discovery of all inconsistent data inputs during solution
of the Purdue University timetabling problem.



In addition, all valid placements of a course in the timetable have a one-to-
one mapping with values in the variable’s domain. This domain can be seen as
a subset of the Cartesian product of the possible starting times, rooms, etc. for
a class represented by these values. Therefore, each value encodes the selected
time pattern (some alternatives may occur, e.g., 1.5 hour × 2 day per week may
be an alternative to 1 hour × 3 day per week), selected days (e.g., a two meeting
course can be taught in Monday-Wednesday, Tuesday-Thursday, Wednesday-
Friday), and possible starting times. A value also encodes the instructor and
selected meeting room. Each such placement also encodes its preferences (soft
constraints), combined from the preference for time, room, building and available
equipment of the room. Only placements with valid times and rooms are present
in a domain. For example, when a computer (classroom equipment) is required,
only placements in a room containing a computer are present. Also, only rooms
large enough to accommodate all the enrolled students can be present in valid
class placements. Similarly, if a time slice is prohibited, no placement containing
this time slice is in the class’s domain.

The variable and value encodings described above leave us with only two
types of hard constraints to be implemented: resource constraints (expressing
that only one course can be taught by an instructor or in a particular room
at the same time), and group constraints (expressing relations between several
classes, e.g., that two sections of the same lecture cannot be taught at the same
time, or that some classes have to be taught immediately after another).

There are three types of soft constraints in this problem. First, there are
soft requirements on possible times, buildings, rooms, and classroom equipment
(e.g., computer or projector). These preferences are expressed as integers:
−2 ... strongly preferred
−1 ... preferred

0 ... neutral (no preference)
1 ... discouraged
2 ... strongly discouraged

As mentioned above, each value, besides encoding a class’s placement (time,
room, instructor), also contains information about the preference for the given
time and room. Room preference is a combination of preferences on the choice of
building, room, and classroom equipment. The second group of soft constraints
is formed by student requirements. Each student can enroll in several classes,
so the aim is to minimize the total number of student conflicts among these
classes. Such conflicts occur if the student cannot attend two classes to which he
or she has enrolled because these classes have overlapping times. Finally, there
are some group constraints (additional relations between two or more classes).
These may either be hard (required or prohibited), or soft (preferred), similar
to the time and room preferences (from −2 to 2).

6.2 Search Algorithm

In Section 4, we described four functions which parameterize the proposed algo-
rithm. Here we will describe their exact settings in our timetabling solver.



The quality of a solution is expressed as a weighted sum combining soft time
and classroom preferences, satisfied soft group constrains and the total number
of student conflicts. This allows us to express the importance of different types
of soft constraints. The following weights are considered in the sum:

Wstudent ... weight of a student conflict,
Wtime ... weight of a time preference of a placement,
Wroom ... weight of a classroom preference of a placement,
Wconstr ... weight of a preference of a satisfied soft group constraint.

Note that preferences of all time, classroom and group soft constraints go from
-2 (strongly preferred) to 2 (strongly discouraged). So, for instance, the value of
the weighted sum is increased when there is a discouraged time or room selected
or a discouraged group constraint satisfied. Therefore, if there are two solutions,
the better of them has the lower weighted sum of the above criteria. Moreover,
additional solution parameters can be included in this comparison as well. For
instance, we can also discourage empty half-hour time segments between classes
(such half-hours cannot be used since all events require at least one hour) or
usage of classrooms that are too large (having more than 50% excess seats).

The termination condition stops the search when the solution is complete
and good enough (expressed as the number of perturbations and the solution
quality described above). It also allows for the solver to be stopped by the user.
Characteristics of the current and the best achieved solution, describing the
number of assigned variables, time and classroom preferences, the total number
of student conflicts, etc., are visible to the user during the search.

The solution comparator prefers a more complete solution (with a smaller
number of unassigned variables) and a solution with a smaller number of pertur-
bations among solutions with the same number of unassigned variables. If both
solutions have the same number of unassigned variables and perturbations, the
solution of better quality is selected.

If there are one or more variables unassigned, the variable selection criterion
picks one of them randomly. We have compared several approaches for variable
selection using domain sizes, number of previous assignments, number of con-
straints in which the variable participates, etc. However, there was no significant
improvement in this timetabling problem in comparison with the random selec-
tion of an unassigned variable. The reason could be, that it is easy to go back
when a wrong variable is picked – such a variable is unassigned when there is
a conflict with it in some of the subsequent iterations.

When all variables are assigned, an evaluation is made for each variable
according to the above described weights. The variable with the worst evaluation
is selected because this variable promises the best improvement in optimization.

We have implemented a hierarchical handling of the value selection criteria.
There are three levels of comparison. At each level a weighted sum of the cri-
teria described below is computed. Only solutions with the smallest sum are
considered in the next level. The weights express how quickly a complete solu-
tion should be found. Only hard constraints are satisfied in the first level sum.
Distance from the initial solution (MPP), and a weighting of major preferences
(including time, classroom requirements and student conflicts), are considered



in the next level. In the third level, other minor criteria are considered. Such
criterion could be for instance a usage of a room that is too large or a number
of empty half-hour time segments between classes. In general, a criterion can be
used in more than one level, e.g., with different weights.

The above sums order the values lexicographically: the best value having the
smallest first level sum, the smallest second level sum among values with the
smallest first level sum, and the smallest third level sum among these values.
As mentioned above, this allows diversification of the importance of individual
criteria. In general, there can be more than three levels of these weighted sums,
however three of them seem to be sufficient for spreading weights of various
criteria for our problem.

The value selection heuristics also allow for random selection of a value with
a given probability Prw (random walk, e.g., 2%) and, in the case of MPP, to
select the initial value (if it exists) with a given probability Pinit (e.g., 60%).

Criteria used in the value selection heuristics can be divided into two sets.
Criteria in the first set are intended to generate a complete assignment:

1. Number of hard conflicts, weighted by Vconf,1 in the first level, Vconf,2 in the
second level and Vconf,3 in the third level.

2. Number of hard conflicts, weighted by their previous occurrences (see conflict-
based statistics section) and by Vwconf,1..3.

Additional criteria allow better results to be achieved during optimization:

3. Number of student conflicts caused by the value if it is assigned to the
variable, weighted by Vstudent,1..3.

4. Soft time preference caused by a value if it is assigned to the variable,
weighted by Vtime,1..3.

5. Soft classroom preference caused by a value if it is assigned to the variable
(combination of the placement’s building, room, and classroom equipment
compared with preferences), weighted by Vroom,1..3.

6. Preferences of satisfied soft group constraints caused by the value if it is
assigned to the variable, weighted by Vconstr,1..3.

7. Difference in the number of assigned initial values if the value is assigned to
the variable (weighted by V∆init,1..3): -1 if the value is initial, 0 otherwise,
increased by the number of initial values assigned to variables with hard
conflicts with the value.

Let us emphasize that the criteria 3–7 are needed for optimization only, i.e.,
they are not needed to find a feasible2 solution. Furthermore, assigning a different
weight to a particular criteria influences the value of the corresponding objective
function (see Fig. 3 with comparison between criteria 3 and 4). The solver returns
good results in reasonable time (e.g., in 30 minutes time limit) when the total
sum of the weights used in additional criteria (3–7) in the first level corresponds
to one half of the weight Vwconf,1 (2). The weights in the second level usually
correspond to the weights used for the solution quality comparison (Wstudent,
Wtime, Wroom, and Wconstr).
2 Feasible solution must satisfy hard constraints.



7 Implementation and Experiments

The timetabling system is implemented in Java. It contains a general implemen-
tation of the iterative forward search algorithm described above. The general
solver operates over variables and values with a selection of basic general heuris-
tics, comparison, and termination functions. It may be customized to fit a par-
ticular problem (as it has been extended for Purdue University timetabling) by
implementing variable and value definitions, adding hard and soft constraints,
and extending the algorithm’s parametric functions.

Besides the above discussed solver, the timetabling application for Purdue
University also contains a web-based graphical user interface (written using Java
Server Pages) which allows management of several versions of the data sets
(input requirements, solutions, changes, etc.), browsing the resultant solutions
(see Fig. 2), and tracking and managing changes between them.

Figure 2. Generated timetable at web-based graphical user interface.

The following experiments were performed on the complete Fall 2004 data
set, including 830 classes to be placed in 50 classrooms. The classes included
represent 89,677 course requirements for 29,808 students. The results presented
here were computed on 1GHz Pentium III PC running Windows 2000, with



512 MB RAM and J2SDK 1.4.2. We have achieved similar results with Fall 2001
and Spring 2005 data sets as well, even though they are quite different in the
number of requirements (Fall 2004 is the most constrained one out of these three
data sets).

Below, we present two types of experiments. The first experiment investigates
finding an initial solution This is followed by experiments on the minimal per-
turbation problem (i.e., where there is an existing solution plus a set of changes
to be applied to it). Solving an initial problem can be seen as a special case of
MPP where all variables are new and therefore have no initial values.

If not stated otherwise, the solution quality weights Wstudent, Wtime, Wroom

and Wconstr in the solution quality weighted sum are set to zero in the following
experiments. First level weight for the weighted hard conflicts Vwconf,1 is set to 1,
all other weights in the value selection criterion are set to zero. Also, there is no
random value selection (Prw = 0). This way, by default, only the hard constraints
are considered during the search. We will show how the other weights influence
the search process and the overall solution quality.

7.1 Initial Problem

The experiments in Table 1 present the behavior of the solver wrt. various set-
tings of weights for particular criteria (the student conflicts, violated time pref-
erences, and violated room preferences). It is important to see that the weights
for particular criteria can be easily adjusted. It allows to emphasize or suppress
particular optimization criteria and it results in the corresponding change of the
solution quality.

Time refers to the amount of time required by the solver to find the presented
solution. Satisfied enrollments gives the percentage of satisfied requirements for
courses chosen by students. Preferred time and preferred room correspond to
the satisfaction of time and room preferences respectively. 100% corresponds
to a case when all classes are placed in their most preferred times or rooms,
0% means a case when the least preferred locations are used. Preferences of soft
group constraints are not presented, since there are no such constraints in the
Fall 2004 data set (all group constraints are either required or prohibited).

A complete solution was found on every run of all experiments in Table 1 ex-
cept the experiment marked No CBS. Average values together with their RMS
(root-mean-square) variances of the best achieved solutions from 10 different
runs found within 30 minute time limit are presented.

The experiment marked No Preference presents average solutions obtained
without any preferences on the soft constraints. All solution quality weights W
and value selection weights V are set to zero, except of the weight Vwconf,1 = 1
(weight of the weighted hard conflicts in the first level of the value selection).

The following three experiments marked Students, Time and Rooms are
minimizing just one of the criteria: the student conflicts, violated time prefer-
ences, or violated room preferences. Students experiment uses the same weights
as No Preference experiment, but student weights are the following: Vstudent,1 =
0.5, Vstudent,2 = Wstudent = 1. Similarly, Time experiment uses weights Vtime,1 =



Table 1. Solutions of the initial problem

Test case No preference Students Time Rooms

Assigned variables [%] 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

Time [min] 0.16± 0.03 9.18± 4.47 18.79± 7.35 0.17± 0.01

Satisfied enrollments [%] 98.26± 0.15 99.74± 0.02 98.19± 0.13 98.18± 0.24

Preferred time [%] 62.54± 1.19 65.57± 1.53 98.75± 0.13 62.14± 0.94

Preferred room [%] 63.64± 2.29 62.96± 1.67 63.72± 1.64 98.58± 0.29

Test case Students + Students + No CBS

Time Time + Rooms

Assigned variables [%] 100.00± 0.00 100.00± 0.00 98.42± 0.20

Time [min] 19.96± 5.34 14.79± 4.87 24.08± 4.42

Satisfied enrollments [%] 99.61± 0.03 99.79± 0.01 99.52± 0.06

Preferred time [%] 95.70± 0.32 95.02± 0.37 94.62± 0.43

Preferred room [%] 62.68± 2.23 75.30± 2.30 83.77± 1.49

0.5, Vtime,2 = Wtime = 1 and Rooms experiment weights Vroom,1 = 0.5, Vroom,2 =
Wroom = 1.

The experiment marked Students + Time equally combines student con-
flicts with time preferences, weights are Vstudent,1 = Vtime,1 = 0.25, Vstudent,2 =
Vtime,2 = Wstudent = Wtime = 1.

The next experiment (marked Students + Time + Rooms) most closely
corresponds to reality. Here all the soft preferences are considered. Student con-
flicts and time preferences are weighted equally, room preferences are considered
much less important. Weights of student conflicts and time preferences are the
same as in the previous experiment (marked Students + Time). Moreover,
the weights on room preferences are Vroom,2 = Wroom = 0.2. Note that rooms
are not considered in the first level of the value selection criteria.

Finally, the last experiment (marked No CBS) presents average solutions
obtained from the solver without conflict-based statistics. The weights on soft
constraints are the same as in the previous experiment. But there is Vconf,1 = 1
(weight of a hard conflict) instead of Vwconf,1 = 1 (weight of a hard conflict
weighted by CBS). Vwconf,1 is set to zero. The solver was not able to find a
complete solution within the given 30 minute time limit, not even when 2%
random walk selection was used (Prw = 0.02) to avoid cycling. Furthermore,
there were at least 5 unassigned classes after 3 hours of running time.

Figure 3 compares several experiments giving different stress on student con-
flicts and time preferences. Average values from the best solutions of 10 different
runs found within 30 minute time limit are presented. Only student conflicts
or time preferences are considered in the border experiments marked students
and time respectively. In the middle (experiment marked 1:1), student conflicts



60%

65%

70%

75%

80%

85%

90%

95%

100%

students 3:1 2:1 1:1 1:2 1:3 time

Satisfied st. enrollments Time preferences

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

students 3:1 2:1 1:1 1:2 1:3 time

Satisfied st. enrollments Time preferences

Figure 3. Comparison of satisfied student enrollments and time preferences: average
quality of the solution (left), improvement of the solution in terms of percentage of the
1:1 solution (right).

and time preferences are equally weighted. The experiment marked 3:1 prefers
student conflicts three times as much as time preferences (i.e., weights of student
conflicts are three times higher than weights of time preferences) and vice versa.
For instance, the experiment marked 1:2 has the following weights: Vwconf,1 = 1,
Vstudent,1 = 0.2, Vtime,1 = 0.4, Vstudent,2 = Wstudent = 1, Vtime,2 = Wtime = 2.

7.2 Minimal Perturbation Problem

The following experiments were conducted on one of the complete initial solu-
tions computed in the previous set of experiments (column marked Students
+ Time + Room in Table 1). Input perturbations were generated such that
a given number of randomly selected variables were not allowed to retain the
values they were assigned in the initial solution. Therefore, these classes cannot
be scheduled to the same placement as in the initial solution (either room or
starting time must be different). Only variables with more than one value in
their domains were used. For each number of input perturbations, 10 different
sets of input perturbations (i.e., variables with initial values prohibited) were
generated. The following figures show the average parameter values of the best
solutions found within 10 minutes.

The aim of the first set of experiments is to find a suitable setting for Pinit

(probability of selection of an initial value) and V∆init,1..3 (difference in the num-
ber of perturbations in value selection). In each experiment, we have executed
10 tests for each of 10, 20, 30, . . . 100 input perturbations respectively (100 runs
in total). The average number of assigned variables together with the average
number of additional perturbations are presented in Table 2. One or a combina-
tion of the criteria is used in each experiment. The second column refers to the
set of criteria described in Table 3. Let us look at the explanation of this table.
For instance, the expression 0.25s=1, 1.0s=2 in the column marked Vstudents,s

means that Vstudents,1 is set to 0.25 and Vstudents,2 is set to 1. The first case



Table 2. Comparison of several approaches to MPP.

Test case Assigned Number of

Pinit ∆init variables [%] perturbations

0.5 0 100.00 13.83

0.6 0 99.98 13.48

0.7 0 99.96 13.33

0.8 0 99.95 12.94

0 2 100.00 31.40

0.6 2 99.99 13.26

0 1 100.00 13.70

0.6 1 100.00 11.90

Table 3. Meaning of ∆init.

∆init V∆init,i Vstudent,s Vtime,t Vroom,r

0 – 0.25s=1, 1.0s=2 0.25t=1, 1.0t=2 0.2r=2

1 0.5i=1 1.0s=2 1.0t=2 0.2r=2

2 1.0i=2 0.25s=1, 1.0s=3 0.25t=1, 1.0t=3 0.2r=3

(∆init=0) corresponds to the settings of the Students + Time + Room ex-
periment. In remaining ∆init sets, we tried to decrease the importance of other
value selection criteria in comparison with the initial value delta. For ∆init=1,
the first level value selection criterion V∆init,1 is used and the other optimization
criteria which were placed in the first level are disabled (Vstudent,1, Vtime,1 are set
to zero). And the third line (∆init=2) corresponds to a case when the second
level value selection criterion V∆init,2 is used and the other optimization criteria
from the second level (Vstudent,2, Vtime,2, Vroom,2) are moved to the third level.

Let us discuss particular experiments from Table 2. In the first four exper-
iments (marked Pinit = 0.5, ..., Pinit = 0.8), the minimal perturbation problem
was solved only by changing the value selection criteria so that it selected the
initial value with a given probability (50%, 60%, 70% and 80% respectively).
Otherwise, it worked exactly as Students + Time + Room experiment, since
all the other weights were the same. As the Pinit probability is rising, we can
see that the average number of additional perturbations is descending, but the
algorithm is loosing the ability to find a complete solution in every run (in the
given 10 minute time limit).

Similarly, we can see that using just the second level value selection criterion
V∆init,2 is able to find a complete solution all the time, but the average number
of additional perturbations is too high. A combination with the 60% probability



of an initial value selection helps to improve the average number of additional
perturbations, but again, there were some cases where a complete solution was
not found.

Using the first level value selection criterion V∆init,1 seems to be very promis-
ing. All the presented experiments with this criterion were able to find a complete
solution. Moreover, the experiment marked Pinit = 0.6, ∆init = 1 (combining
V∆init,1 with 60% initial value selection probability) gave us the best results from
the above experiments, since the average number of additional perturbations was
the smallest. The following results (see Figures 4 and 5) were computed using
the weights from this experiment.

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100
Input perturbations

A
dd

iti
on

al
 p

er
tu

rb
at

io
ns

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 10 20 30 40 50 60 70 80 90 100
Input perturbations

A
dd

iti
on

al
 p

er
tu

rb
at

io
ns

 [%
]

Figure 4. Absolute number of average additional perturbations (left) and average ad-
ditional perturbations in terms of percentage of the number of input perturbations
(right).

Figure 4 presents the average number of additional perturbations (variables
that were not assigned their initial values though not prohibited). Additional
perturbations are presented wrt. the absolute number of input perturbation (i.e.,
up to about 13.4% of input perturbations is considered). The best solution found
within 10 minutes from each experiment is taken into account. The number of
additional perturbations grows with the number of input perturbations.

The graph on the left of Figure 5 shows the average quality of the resulting
solutions in the same manner as presented in Table 1. Because the initial solution
is (at least locally) optimal, and because the number of additional perturbations
is the primary minimization criterion, it is not surprising that the quality of the
solution declines with an increasing number of input perturbations. The weight-
ing between time preferences, student conflicts, and other parameters considered
in the optimization can have a similar influence as seen in the initial solutions.

Finally, the graph on the right of Figure 5 presents the average time needed
to find the best solution. Note that a 10 minute time limit for finding a best
solution was set. The influence of this limit is seen mostly on the right portion
of the chart, where the number of input perturbations exceed 50.



70%

75%

80%

85%

90%

95%

100%

0 10 20 30 40 50 60 70 80 90 100
Input perturbations

Student conflicts [%] Time preferences [%] Room preferences [%]

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100
Input perturbations

Ti
m

e 
[s

]

Figure 5. Average solution quality (left), average time (right).

Other Problems. Some MPP results of a preliminary version of the above de-
scribed iterative forward search algorithm (e.g., without conflict-based statistics)
on the random placement problem (see http://www.fi.muni.cz/∼hanka/rpp/ for
details) are presented in our earlier work [1]. Here, it is compared with an algo-
rithm combining branch-and-bound approach and the limited assignment num-
ber (LAN) search algorithm [2]. In this comparison, the iterative forward search
algorithm was significantly better in its computational speed and in the number
of additional perturbations than the other algorithm.

8 Conclusions

We have proposed and implemented a solution to a large scale university time-
tabling problem. Our proposal includes a new iterative forward search algorithm
that is extended by conflict-based statistics which we believe can be generalized
to other search algorithms. Both ideas combined together suffice to solve the
problem and the role of additional heuristics can be minimized. Our problem
solver is able to construct a demand-driven timetable as well as incorporate dy-
namic aspects. The initial solution generated by our solver satisfies the course
requests of more than 99% of students together with about 95% of time require-
ments. The automated search was able to find suitable times and classrooms for
all classes. The experiments with a MPP give us very promising results as well.
Within 10 minutes, the solver was able to find a complete, high quality solution
with a small number of additional perturbations.

Our future research will include extensions of the proposed general algorithm
together with improvements to the implemented solver. We would like to do
an extensive study of the proposed Minimal Perturbation Problem solver and
its possible application to other, non timetabling problems. We are also planning
to compare our results with the previous CLP solver [15] we have implemented.
We are currently extending the CLP solver with some of the features included
here to present a fair comparison.



We are also working on extensions to the implemented solver to cover ad-
ditional requirements and problem features required by Purdue University. The
strategy for computing perturbations needs to be extended as well. For exam-
ple, a change in time is usually much worse than a movement to a different
classroom. The number of enrolled/involved students should also be taken into
account. Another factor is whether the solution has already been published or
not.

Acknowledgments. This work is partially supported by Purdue University,
by the Czech Science Foundation under the contract No. 201/04/1102 and by
the Ministry of Education of the Czech Republic under the research intent
No. 0021622419. Our thanks also go to the Supercomputer Center Brno where
experiments with the search algorithms were conducted. We would like to thank
our students for their assistance in solving this problem and Purdue staff who
have helped in many ways. Our thanks also go to Keith Murray for his careful
proofreading of the drafts of this paper.

References

[1] Roman Barták, Tomáš Müller, and Hana Rudová. A new approach to modeling
and solving minimal perturbation problems. In Recent Advances in Constraints,
pages 233–249. Springer Verlag LNAI 3010, 2004.

[2] Roman Barták and Hana Rudová. Limited assignments: A new cutoff strategy
for incomplete depth-first search. In Applied Computing, pages 388–392. ACM,
2005.

[3] Hadrien Cambazard, Fabien Demazeau, Narendra Jussien, and Philippe David.
Interactively solving school timetabling problems using extensions of constraint
programming. In Edmund K. Burke and Michael Trick, editors, PATAT 2004—
Proceedings of the 5th International Conference on the Practice and Theory of
Automated Timetabling, pages 107–124, 2004.

[4] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.
[5] Rina Dechter and Daniel Frost. Backjump-based backtracking for constraint sat-

isfaction problems. Artificial Intelligence, 136(2):147–188, 2002.
[6] Abdallah Elkhyari, Christelle Guéret, and Narendra Jussien. Solving dynamic

timetabling problems as dynamic resource constrained project scheduling prob-
lems using new constraint programming tools. In Edmund Burke and Patrick De
Causmaecker, editors, Practice and Theory of Automated Timetabling, Selected
Revised Papers, pages 39–59. Springer-Verlag LNCS 2740, 2003.

[7] Christelle Guéret, Narendra Jussien, Patrice Boizumault, and Christian Prins.
Building university timetables using constraint logic programming. In Edmund
Burke and Peter Ross, editors, Practice and Theory of Automated Timetabling,
pages 130–145. Springer-Verlag LNCS 1153, 1996.

[8] Narendra Jussien and Olivier Lhomme. Local search with constraint propagation
and conflict-based heuristics. Artificial Intelligence, 139(1):21–45, 2002.

[9] Waldemar Kocjan. Dynamic scheduling: State of the art report. Technical Report
T2002:28, SICS, 2002.

[10] Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics.
Springer, 2000.



[11] Ian Miguel. Dynamic Flexible Constraint Satisfaction and its Application to AI
Planning. Springer, 2004.

[12] Tomáš Müller and Roman Barták. Interactive timetabling: Concepts, techniques,
and practical results. In Edmund Burke and Patrick De Causmaecker, editors,
PATAT 2002—Proceedings of the 4th international conference on the Practice
And Theory of Automated Timetabling, pages 58–72, 2002.

[13] Sylvain Piechowiak, Jingxua Ma, and René Mandiau. EDT-2004: An open inter-
active timetabling tool. In Edmund K. Burke and Michael Trick, editors, PATAT
2004—Proceedings of the 5th International Conference on the Practice and The-
ory of Automated Timetabling, pages 305–321, 2004.

[14] Yongping Ran, Nico Roos, and Jaap van den Herik. Approaches to find a near-
minimal change solution for dynamic CSPs. In Fourth International Workshop
on Integration of AI and OR techniques in Constraint Programming for Combi-
natorial Optimisation Problems, pages 373–387, 2002.

[15] Hana Rudová and Keith Murray. University course timetabling with soft con-
straints. In Edmund Burke and Patrick De Causmaecker, editors, Practice
and Theory of Automated Timetabling, Selected Revised Papers, pages 310–328.
Springer-Verlag LNCS 2740, 2003.

[16] Hani El Sakkout and Mark Wallace. Probe backtrack search for minimal pertur-
bation in dynamic scheduling. CONSTRAINTS, 4(5):359–388, 2000.

[17] Gérard Verfaillie and Narendra Jussien. Dynamic constraint solving, 2003. A
tutorial including commented bibliography presented at CP 2003. See http://

www.emn.fr/x-info/jussien/CP03tutorial/.
[18] Gérard Verfaillie and Narendra Jussien. Constraint solving in uncertain and dy-

namic environments – a survey. Constraints, 2005. To appear.


