
Modeling and Solution of a Complex University
Course Timetabling Problem

Keith Murray1, Tomáš Müller1, and Hana Rudová2

1 Space Management and Academic Scheduling, Purdue University
400 Centennial Mall Drive, West Lafayette, IN 47907-2016, USA

kmurray@purdue.edu

muller@purdue.edu
2 Faculty of Informatics, Masaryk University
Botanická 68a, Brno 602 00, Czech Republic

hanka@fi.muni.cz

Abstract. The modeling and solution approaches being used to au-
tomate construction of course timetables at a large university are dis-
cussed. A course structure model is presented that allows this complex
real-world problem to be described using a classical formulation. The
problem is then tackled utilizing a course timetabling solver model that
transforms it into a constraint satisfaction and optimization problem.
The tiered structure of this approach provides flexibility that is help-
ful in solving the multiple subproblems that arise from decomposition of
the university-wide problem. A production system has been partially im-
plemented and results of early use are presented. Practical issues raised
during the implementation of the automated timetabling system are also
discussed.

1 Introduction

Timetabling is a widely studied area and many potentially useful algorithms have
been offered for solving the university course timetabling problem, as evidenced
by several recent surveys [7, 19, 16]. Unfortunately, much of the work in this area
has been conducted using artificial data sets or based on actual problems that
have been greatly simplified. Methods developed have also rarely been extended
to the solution of actual university problems of any large scale. McCollum offers
a good review of this situation in [11].

The major differences between many of the problems studied and their real-
life counterparts are the additional complexity imposed by course structures, the
variety of constraints imposed, and the distributed responsibility for information
needed to solve such problems at a university-wide level. University timetabling
problems may also involve the solution of multiple subproblems with very dif-
ferent characteristics. In practice, therefore, the solution process should not be
specifically tailored to a single problem type.

The work described here has been motivated by the need to create and modify
course timetables at Purdue University that better meet student course demand



and allow students to be assigned to the constituent course sections in a way
that minimizes conflicts. Purdue is a large (39,000 students) public university
with a broad spectrum of programs at the undergraduate and graduate levels. In
a typical term there are 9,000 classes offered using 570 teaching spaces. Approxi-
mately 259,000 individual student class requests must be satisfied. The complete
university timetabling problem is decomposed into a series of subproblems to be
solved at the academic department level, where the resources required to provide
instruction are controlled. Several other special problems, where shared resources
or student interactions are of critical importance, are solved institution wide. A
major consideration in designing the system has been supporting distributed
construction of departmental timetables while providing central coordination of
the overall problem. This reflects the distributed management of instructional
resources across multiple departments at the University. The general definition of
the university-wide timetabling problem described in this paper is similar to the
problem studied by Carter [6] at the University of Waterloo, and the influence of
that work can be seen here, though the solution methods used differ significantly.
It is hoped that the results of the present work will, likewise, be beneficial to
other institutions seeking to improve their ability to construct course timetables
for their students.

This paper discusses the approach used for modeling and solving the addi-
tional complexities involved in developing automated solution techniques for a
real-life course timetabling problem on the scale of a large university. Although
a specific example is discussed, many of the methods used should be applicable
to modeling and solving other complex problems.

The complexity of the university course timetabling problem studied here
has been broken down by developing a logical data model allowing all courses
to be represented as hierarchical groupings of classes with additional parent–
child relationships and constraints governing their placement. This allows use of
one standard class-oriented problem formulation rather than having to develop
different models and solution methods to work with the wide variety of ways
that departments organize the instruction given in their courses.

A flexible and general solution technique has been developed for solving
course timetabling problems and applied to all of the departmental and special
subproblems. Rather than applying multiple solution methods, each optimized
around the characteristics of a specific problem, a single solution approach allows
the outcomes of all of these subproblems to be easily combined into a complete
solution and facilitates optimization of the sectioning of students across the com-
plete timetable.

Each of these topics will be explored in greater depth in the next three sec-
tions of this paper, followed by observations on creating a general framework
that is very useful in developing a practical solver. Several practical issues faced
while implementing a real-world system are then discussed, including compet-
itive behavior among users, making changes to solutions, and managing data
consistency. Some results from actual use of the system to solve departmental
and campus problems are also presented. In addition, links are provided to the



problem data used in this work to promote further study by other researchers
using real data instances.

2 Problem Decomposition

Timetabling is a resource allocation problem; therefore, at most universities re-
sponsibility for constructing the timetable is distributed among the academic
units with the faculty, physical facilities, and other resources required for offer-
ing instruction. Providing support for this distributed responsibility is important
because departmental timetablers have a much more intimate knowledge of the
needs of the courses offered, the faculty who might be able to teach a particular
class, and the spaces available for specialized instruction than any database that
might be maintained centrally. Maintaining each department’s sense of owner-
ship in the timetables that are produced is also an important factor in their
acceptance of the solutions produced by an automated timetabling process. The
process needs to be one that assists them rather than replaces them.

Student degree programs may or may not consist of courses offered primar-
ily within a single academic unit. If they do, the larger university timetabling
problem may be decomposed into a series of departmental problems with little
likelihood of creating class time assignment conflicts for students. A number of
individual departmental or school level problems have been studied in the liter-
ature [9, 1, 5, 17]. The problem becomes more complex, however, when students
attend courses from multiple academic units and the solutions are dependent
upon the availability of students for the classes across multiple problems. Here
the overall problem can not be easily decomposed along the lines of academic
units and additional coordination is required.

In the case of Purdue University, there are many large introductory courses
that serve students in almost all degree programs. Since there are substantial
numbers of students enrolled in more than one of these courses, they create a
large dependency between the timetables of individual departments offering in-
struction. To deal with this, the cluster of large courses with students from many
disciplines is split off as a separate problem that is solved by a central scheduling
office with input from departmental timetablers. This problem is solved first, as-
signing times in a set of centrally managed lecture facilities, so that the results
are available to all of the departmental timetablers as they solve the remainder of
their problems. Most of the courses in the departmental problems primarily serve
students in programs offered by that department. There are other groupings that
occur however. There are several colleges where four or five departments create
their timetable together because all of the departments provide courses that
serve the same degree program. There are also several special problems, such as
assigning classes that require shared campus computer laboratories. The ability
to solve all of these different types of problems is one of the major challenges in
automating the timetabling process at a large university.

To better understand the effect on solution quality of decomposing the prob-
lem into multiple parts, some post timetabling experiments were run solving all



Table 1. Combined Solution Properties of Four Problems (Spring 2007)

Test case Final Run Separately Run Combined

Assigned variables 1756.0 1756.0± 0.0 1756.0± 0.0
Time [min] - 31.8± 5.9 44.1± 9.7
Student conflicts 1258 907.7± 25.1 849.9± 27.4
Preferred time [%] 86.2 90.6± 0.7 91.2± 1.1
Preferred room [%] 82.8 83.7± 0.5 83.9± 0.4
Preferred distribution [%] 61.0 66.4± 3.7 71.6± 3.4

of the parts together as a single problem. Although data for all departmental
and other special problems at the University is not yet available, comparison of
several parts addressed separately and combined as a whole gives some indica-
tion of what is lost in solution quality as a result of the decomposition. Table 1
shows a summary of several measures of solution quality3 for the large lecture
problem, the central computing labs, and two different departmental problems
when run separately and when combined. The same room resources were used
for the separate and combined runs. As expected, there is a decrease in the
number of student conflicts when all of the problems are considered together.
There is also a slight improvement in the overall satisfaction of time, room, and
distribution preferences. These improvements must be considered as theoretical,
however, since the combined solution has not been reviewed and accepted by all
of the schedule managers who have the real final say on solution quality.

The column labeled final summarizes these same measures of solution qual-
ity for the actual final timetables produced by University schedule managers
using this application for Spring 2007. These solutions were initially computed
individually using the automated solver (see Section 4); however, some addi-
tional changes were applied manually later in the process using the solver in its
interactive mode (see Section 6.2).

2.1 Interactions Between Problems

As described in the previous section, the Purdue University timetabling problem
is naturally decomposed into

– a centrally timetabled large lecture room problem (about 800 classes time-
tabled into 55 rooms with sizes up to 474 seats),

– individually timetabled departmental problems (about 70 problems with 10
to 500 classes using departmental laboratory spaces and centrally managed
classrooms allocated to departments based on expected class hours),

3 Average values and RMS (root-mean-square) variances between the best solutions
found for 10 different runs are presented. Run time is 30 minutes for individual
problems and 120 minutes for the combined problem using 2.13 GHz Pentium M,
Java 1.5.0, 2GB RAM.



– and a centrally timetabled computer laboratory problem (about 450 classes
timetabled into 36 rooms with 20 to 45 seats).

The large lecture room problem consists of the largest classes on campus that
are attended by students from multiple departments. This problem is also very
dense. On average, rooms are utilized over 70% of the available time, and this
rate increases with room size (utilization is over 85% for all rooms above 100
seats and about 97% for the four largest rooms having over 400 seats). Since there
are many interactions between this problem and the departmental problems, the
large lecture problem is solved first and the departmental problems are solved
on top of this solution.

On the opposite end of the spectrum, the computer laboratory problem is
solved at the very end of the process, on top of the large lecture room and
departmental problem solutions. It contains only small classes, most of which
have many sections (laboratories are normally the smallest subparts of a course).
A typical example is a course having one large lecture class for 100 students, two
departmental recitations with 50 students each, and four computer laboratories
of 25 students.

The departmental problems are solved more or less concurrently. These prob-
lems are usually quite independent of one another, occurring in mostly differ-
ent sets of rooms, with separate instructors and students. However, there are
some cases with higher levels of interaction, particularly among students. In or-
der to address these situations, a concept referred to as “committing” solutions
has been introduced. Each user of the timetabling system (e.g., a departmental
schedule manager) can create and store multiple solutions. At the end of the pro-
cess a single solution must be selected and committed. During the commit, all
conflicts between the current solution and all other solutions that have already
been committed are checked and the commit is successful only when there are
no hard conflicts between these solutions. Each problem being solved also auto-
matically considers all of the previously committed solutions. This means that
a room, an instructor, or a student is available at a particular time only if that
time is not already occupied in a commited solution for a different problem. This
approach can be beneficial, for instance, in a case where there are two or more
departments with many common students. Here, the problems can be solved in
an agreed upon order (the second department will solve its problem after the first
department commits its solution). Moreover, if a room must be shared by two
departments, a room sharing matrix can be defined, stating the times during the
week that a room is available for each department to use. Finally, there is also
an option to combine two or more individual problems and solve as one larger
problem, considering all of the relations between the problems in real time.

2.2 Problem Characteristics

Each of the problems that the overall university timetabling problem has been de-
composed into has characteristics that are different from many of the other prob-
lems. Some of the different attributes of the large lecture room problem (LLR),



computer laboratory problem (LAB) and two selected departmental problems
(D1, D2) are listed in Table 2.

Table 2. Characteristics of Selected Problems (Spring 2007)

Problem LLR D1 D2 LAB

Number of classes 804 440 69 442

Avg. number of classes per type of instruction 1.25 3.52 1.50 4.8

Avg. number of hours per class 2.40 2.43 2.30 1.97

Avg. number of meetings per class 2.09 2.32 1.67 1.25

Avg. number distribution constraints per class 0.68 2.94 0.78 1.82

Number of rooms 55 25 6 36

Room sizes 40− 474 24− 51 14− 48 20− 45

Avg. room utilization [hours/week] 35.0 42.8 26.5 24.2

Average distance between rooms [m] 223.9 83.9 21.5 159.7

Number of students 27881 11992 1312 8408

Avg. number of classes per student 3.15 1.11 1.40 1.14

Classes with an instructor assigned [%] 69.8 33.9 60.9 13.35

Avg. number of classes per instructor 1.25 1.49 1.68 2.11

If solved independently, the large lecture room problem is the most difficult.
In addition to being the largest problem in terms of number of classes, it must
consider more students requesting multiple classes within the problem, rooms
with a greater variation in size, very high utilization in the larger rooms, and
large distances between some rooms. There are also fewer alternatives for section-
ing student enrollments. The average number of classes per type of instruction
offered as part of the course (e.g., lecture, laboratory) is only 1.25. For depart-
mental problems, besides the properties listed in Table 2, it is also necessary to
consider that they are being built on top of the large lecture problem and that
there are many teachers and students in common between them and the LLR
problem. This can be an even greater complication for the computer laboratory
problem, since it is being built on top of all of the other problems.

3 Modeling the University Course Timetabling Problem

Arguably, the biggest obstacle to solving actual university course timetabling
problems is that the complexity can increase considerably beyond that repre-
sented in standard formulations of the problem [7, 19, 16]. As the complexity
increases, it is easy to be caught in the dual bind that the problem is both more
challenging to develop an effective solution approach for, and this approach is



less likely to be usable on other university timetabling problems, or even on
all problems that may exist at a single institution. This complexity arises from
many aspects of real-life problems. Among the most important are the structure
of course offerings and the wide range of constraints that arise. As noted above,
student enrollments across disciplines and shared use of resources between au-
tonomous departments are also of concern. Other factors include the number and
uniformity of the meeting times, dates, and locations over which classes need to
be assigned.

3.1 Course Structure

The structure of course offerings may be the most problematic. Although the
problem is generally labeled “course timetabling,” in actuality it is the individual
classes that make up a course which must be timetabled. In this paper, a class is
defined to be a series of similar meetings for a subset of students enrolled in the
course. Courses are usually composed of multiple classes that may be known as
lectures, tutorials, laboratories, etc. Students normally enroll to various course
offerings that are required to meet the requirements of their degree program,
and most university information systems are organized around courses (known
as modules in some regions) as the unit of instruction.

The modeling problem becomes one of creating a logical data structure that
can be used to translate all parts of the course structure, and the relationships
between these parts, into a set of classes and an extended set of constraints
between them. The complex real-life problem can then be solved at the class
level using a standard formulation of the course timetabling problem.

To incorporate all of the course structures found in the Purdue problem, a
four level model was developed that breaks down each course into as many as
four tiers to reflect the relationships among all of the classes that constitute
it. While in a simple lecture course the class and the instructional offering are
one and the same, for a large course there may be tens or hundreds of classes
associated with a single instructional offering. A diagrammatic representation of
the course structure model and an example showing the parts of a more complex
course is shown in Figure 1. A more detailed description of each layer in this
model is given in the paragraphs below.

For the sake of clarity, the term instructional offering has been used in this
model to distinguish the highest level of the structure from course, which is
the more usual term for a series of lessons containing the subject matter to be
taught. This was necessary since many universities have adopted the habit of
listing the same subject matter in their course catalogs under more than one
subject and course number. This boutique naming system can create quite a
complication when attempting to automate timetabling since it results in many
courses requiring the same times in the same rooms with the same instructors.
It is also difficult under this system to know how many students are actually
being taught together. The model addresses such cases by treating all course
identifiers as pseudonyms and linking the courses together to form a single in-
structional offering. Naturally, all courses that are linked together must have



Instructional Offering Configuration Subpart Class
Alternate Listing Parent multiple

Child offerings. . .

MA 100 – Calculus Traditional Lecture Lec 1 Lec2
ENGR 101 Recitation Rec1 Rec4

Rec2 Rec5
Rec3 Rec6

Computer-Aided Lecture Lec3
Recitation Rec7

Rec8
Laboratory Lab1

Lab2

Fig. 1. Model of course structure. Example shows representation of an instructional
offering with two catalog listings, two alternate configurations, and two subparts linked
by a parent–child relationship.

the same structure. The alternate listing below instructional offering in Figure 1
indicates this linkage with other courses that actually meet together as part of
a single instructional offering. The instructional offering is the basic organizing
unit in this model. The offering is then divided into its constituent classes, which
are the unique entities to be timetabled.

Many courses (or instructional offerings in the model’s terminology) have
multiple subparts, such as tutorials or laboratories, that are associated with
a parent lecture. In some cases, the course may even be offered with different
configurations of these subparts. One instructor, for example, may wish to teach
the course material entirely in a lecture format whereas another may wish to
devote one day per week to small discussion groups. The configuration level is
included in this model to account for these types of situations.

At the subpart level, the type of instruction usually takes on different char-
acteristics. The students in the course may be divided into smaller groups for
different activities and other types of facilities may be required. It may or may
not be important for one group of students to be together in two or more dif-
ferent subparts of a course, such as wanting all students sectioned into a discus-
sion group to also be in a laboratory together. To accommodate such needs, a
parent–child relationship has been included in the model at the subpart level. If
a parent–child relationship is established between two subparts, all students in
a class belonging to the child subpart must also be sectioned to the appropriate
parent class. Constraints are generated prohibiting an overlap in time between
parent and child classes. In the GUI built for entering data, these parent–child
relationships are set up much like file folders in a directory tree as indicated by



the indented subparts in Figure 1. Any attributes or preferences that apply to
all classes within a subpart can be set at the subpart level. An illustration of
how the structure is displayed by the interface is shown in Figure 2.

Fig. 2. Structure of classes as displayed in user interface. The configuration is displayed
in the gray shaded area. Individual classes to be timetabled are listed below.

Timetabling takes place at the class level. There will typically be multi-
ple classes associated with each subpart, especially when tutorial or laboratory
sections are involved. Each class inherits attributes and preferences set on the
subpart level, or these may be set for an individual class. Attributes or prefer-
ences set at the class level will override those set at higher levels. Each class must
indicate the amount of time it meets, desired meeting pattern, weeks the class
should meet during the term, and facility needs. Specific time, room, and room
feature preferences or requirements may also be set. If an instructor is entered,
preferences may also be inherited from those set on the instructor.

3.2 Constraints

The large number and variety of constraints that arise, both from the class struc-
ture and special requirements, also adds to the difficulty in finding a solution to
real problems. In addition to the usual constraints specifying that an instructor



can only teach one class at a time, there can only be one class per room, and
the room must accommodate class requirements, each of the departmental and
special problem instances has additional hard and soft constraints that differ
according to the concerns of the individual unit. This imposes a demand that
the solution method must be very robust so that it can accommodate each of
these different problem formulations.

Each schedule manager is able to set whatever hard or soft constraints are
considered necessary on the problem he/she is responsible for. These fall into
the categories listed in Table 3. A consistent scale (required, strongly preferred,
preferred, neutral, discouraged, strongly discouraged, prohibited) is established
for setting all of these constraints. Required and prohibited indicate hard con-
straints. Distribution constraints may be set between individual classes or be-
tween all classes associated with an instructional offering or subpart. Managers
may also override the normal hard constraint requiring one class per room by
setting the number of rooms an individual class should be timetabled to.

Table 3. User Set Constraints

Time: Meeting Time Pattern
Individual Times

Rooms: Specify Individual Buildings/Rooms
Specify User Defined Room Group

Room Features: Select Based on User Defined Set of Features
Class Distribution: Time Between

Time Order of Classes
Place Classes in Time Groups
Use Same Meeting Dates/Times
Spread in Time
Restrict Classes Meeting at Same Time
Room Sharing

As noted in the section on course modeling above, a number of additional
constraints are automatically set on each problem due to the structure of the
course. These require a student to be sectioned into one class for each subpart
and prohibit conflicts between parent and child classes. Time assignments for all
classes within a subpart are also automatically spread across all non-prohibited
times. In addition, an automatic calculation of distances between rooms is per-
formed to penalize class placements that require students or instructors to travel
large distances between consecutive classes. There is also a set of constraints that
seek to ensure efficient use of resources by discouraging use of larger rooms than
required or time placements that leave gaps in the schedule that are inconsistent
with the standard time patterns used by most classes.



4 Solution Methods

The solver applied to this problem is based on constraint satisfaction tech-
niques [8] which are frequently applied to solve timetabling problems [9, 18, 5].
A constraint satisfaction and optimization problem (CSOP) consists of a set of
variables having finite domains, a set of (hard) constraints restricting the values
that these variables can be assigned at the same time, and an objective func-
tion. In a complete solution to a CSOP, a value is assigned to every variable such
that every hard constraint is satisfied. The objective can be expressed by the
soft constraints and the aim is to find a complete solution that violates the least
number of these soft constraints (or a weighted sum of violated soft constraints).

Since a large majority of classes meet in a regular fashion, it is normally
possible to represent all meetings of a class using a single variable. Although not
required by the solver, tying meetings together into standard time patterns in
this way considerably simplifies the problem constraints. As a result of modeling
classes as a homogenous series of events, most classes have all meetings in the
same room, taught by the same instructor, and at the same time of day. Meetings
are also separated by a uniform number of days. A typical standard time pattern
for a class meeting 3 hours per week is to meet 3 days per week for 1 hour.
Moreover, in the time patterns used by Purdue, these three meetings can only
be on Monday, Wednesday, and Friday starting at half past each hour.

All valid placements of a course in the timetable have a one-to-one correspon-
dence with values in the variable’s domain. This means that each value encodes
the selected date pattern (weeks when the class is to be taught), time pattern,
and starting time. Each value also encodes the instructor and the given number
of meeting rooms. Additionally, each such placement also encodes preferences
(soft constraints), combined from the preferences for time, room, and room fea-
tures, inherited from various levels of the input data. Only placements with valid
times and rooms are present in a class’s domain. For example, if an instructor
computer (room feature) is required, only placements in a room containing a
computer are present. Also, only rooms large enough to accommodate all the
enrolled students can be present in valid class placements. Similarly, if a time
interval is prohibited, no placement containing this time interval is in the class’s
domain.

The variable and value encodings described above leave only two types of
hard constraints to be implemented: hard resource constraints (e.g., only one
class can be taught by an instructor, or in a room, at any time, and only when
that resource is available), and hard distribution constraints (expressing required
or prohibited relations between several classes, e.g., that two sections of the same
lecture can not be taught at the same time, or that a classes must be taught
after another). There are three types of soft constraints. The first category of soft
constraints are those on times and rooms. The second group of soft constraints
is formed by student requirements. Each student can enroll in several classes,
so the aim is to minimize the total number of student conflicts among these
classes. Finally, there are soft distribution constraints that express preferred or
discouraged relations between groups of classes.



4.1 Timetabling Solver

The solver is based on an iterative forward search algorithm [13, 15]. This algo-
rithm is similar to local search methods; however, in contrast to classical local
search techniques, it operates over feasible, though not necessarily complete,
solutions. In these solutions some classes may be left unassigned. All hard con-
straints on assigned classes must be satisfied however. Such solutions are easier
to visualize and more meaningful to human users than complete but infeasible
solutions. Because of the iterative character of the algorithm, the solver can
also easily start, stop, or continue from any feasible solution, either complete
or incomplete. Moreover, the algorithm is able to support dynamic aspects of
the minimal perturbation problem [4, 15], allowing the number of changes to the
solution (perturbations) to be kept as small as possible.

The search is processed iteratively (see Fig. 3 for the algorithm). During each
step, a variable is selected. Typically an unassigned variable is chosen. An as-
signed variable may be selected when all variables are assigned but the solution
is not good enough, e.g., when there are still many violations of soft constraints.
Once a variable is selected, a value from its domain is chosen for assignment.
Even if the ‘best’ value is selected, its assignment to the selected variable may
cause some hard conflicts with already assigned variables. Such conflicting vari-
ables are removed from the solution and become unassigned. Finally, the selected
value is assigned to the variable. The algorithm attempts to move from one (par-
tial) feasible solution to another via repetitive assignment of a selected value to
a selected variable. During this search, the feasibility of all hard constraints in
each iteration step is enforced by removing conflicting variables. The search is
terminated when the desired solution is found or when there is a timeout. The
best solution found is then returned.

procedure solve(initial) // initial solution is the parameter
iteration = 0; // iteration counter
current = initial; // current solution
best = initial; // best solution
while canContinue (current, iteration) do

iteration = iteration + 1;
variable = selectVariable (current);
value = selectValue (current, variable);
unassign(current, conflicting variables(current, variable, value));
assign(current, variable, value);
if better (current, best) then best = current

end while
return best

end procedure

Fig. 3. Pseudo-code of the search algorithm.



Application of this algorithm to the course timetabling problem has been de-
scribed previously [15] in greater detail; however, its use is not limited to course
timetabling. The algorithm can be easily applied to various constraint satisfac-
tion and optimization problems and has been extended in several ways [13]. An
example is the use of a learning technique called conflict-based statistics that has
been developed to improve the quality of the final solution [14]. In this approach,
conflicts during the search are memorized in order to minimize their potential
repetition.

4.2 Sectioning

Many course offerings consist of multiple classes, with students enrolled in the
course divided among them. These classes are often linked by a set of constraints,
namely:

– Each class has a limit stating the maximum number of students who can be
enrolled in it.

– A student must be enrolled in exactly one class for each subpart of a course.
– If two subparts of a course have a parent–child relationship, a student en-

rolled in the parent class must also be enrolled in one of the child classes.

Moreover, some of the classes of an offering may be required or prohibited for
certain students, based on reservations that can be set on an offering, a config-
uration, or a class.

Before implementing the solver, an initial sectioning of students into classes
is processed. This sectioning is based on Carter’s [6] homogeneous sectioning
and is intended to minimize future student conflicts. However, it is still possible
to improve on the number of student conflicts in the solution. This can be ac-
complished by moving students between alternative classes of the same course
during or after the search. Several approaches have been discussed in the litera-
ture on the sectioning subproblem [3, 10, 2], usually incorporating some iteration
between sectioning and timetabling during the solution process.

In the current implementation, students are not re-sectioned during the
search, but a student re-sectioning algorithm is called after the solver is finished
or upon the user’s request. The re-sectioning is based on a local search algorithm
where the neighboring assignment is obtained from the current assignment by
applying one of the following moves:

– Two students enrolled in the same course swap all of their class assignments.
– A student is re-enrolled into classes associated with a course such that the

number of conflicts involving that student is minimized.

The solver maintains a queue, initially containing all courses with multiple
classes. During each iteration, an improving move (i.e., a move decreasing the
overall number of student conflicts) is applied once discovered. Re-sectioning is
complete once no more improving moves are possible. Only consistent moves
(i.e., moves that respect class limits and other constraints) are considered. Any



additional courses having student conflicts after a move is accepted are added
to the queue.

Since students are not re-sectioned during the timetabling search, the com-
puted number of student conflicts is really an upper bound on the actual number
that may exist afterward. To compensate for this during the search, student con-
flicts between subparts with multiple classes are weighted lower than conflicts
between classes that meet at a single time (i.e., having student conflicts that
cannot be avoided by re-sectioning).

5 General Framework for Modeling and Solving Problem

One observation that can be made as a result of the work modeling the uni-
versity course timetabling problem and developing a solution method capable
of addressing the level of complexity involved, is that the overall approach to
structuring the problem is a critical factor in achieving a successful outcome.
Solving this problem has required multiple iterations, each expanding the course
data structure and the constraints needed to accurately represent the problem.
Without having separate components to the solution process, each able to ad-
dress specific aspects of the overall problem without requiring extensive rework
of other components, it would have been much more difficult to accommodate
all of the necessary changes. The structure that has been developed in the course
of solving the problem described here can be modeled using the following three
tier architecture:

Presentation (persistent/user interface) Layer
Timetabling (solver implementation) Layer

Constraint Satisfaction (solver abstract) Layer

The presentation layer consists of data persistency, business logic and a user
interface for data entry and operation of the timetabling solver. It contains the
structure of courses, classes, rooms, instructors, constraints, preferences, and
requirements as entered by users. All data on this level are persistent, stored in
the database in a similar structure as it is presented to the users. This layer also
contains timetable solutions in the structure that they are stored in the database
and presented to the users.

The timetabling layer contains the data model being used by the timetabling
solver. There are no persistent data in this layer and there is no direct communi-
cation between this layer and the database or the user interface. Communication
between (the business logic of) the presentation layer and the timetabling layer
consists of two parts. The first intermediates the interaction between the data
model of the presentation layer and the timetabling layer, i.e., loading the data
into the solver and saving the resulting solution from the solver. There are var-
ious transformations present in this interface. For instance, the entire course
structure is transformed into classes and all preferences are inherited to the
class level. The second interface allows the user interface from the presentation
layer to operate the solver as well as to present the solution from the timetabling



layer to the user. The data model of this structure contains classes, room and
time assignments, room, instructor, distribution, and other constraints as well
as the problem specific heuristics that are used to guide the solver.

The constraint satisfaction layer consists of an implementation of the con-
straint satisfaction and optimization solver, working with variables, values and
(hard and soft) constraints. The solver is guided by a general set of heuristics
(e.g., variable and value selection criteria) without knowledge of any classes,
rooms or other timetabling specific primitives. The interface between the con-
straint satisfaction and timetabling layers is implemented through general ab-
stract objects like variables, values, and constraints by the corresponding time-
tabling problem specific objects like classes, time/room assignments, and re-
source or distribution constraints. Similarly, some of the general heuristics are
extended by the problem specific ones of the timetabling layer.

The aim of this architecture is to be able to alter one of the layers without
having to change the others. In this way the solver can be modified, or even
completely changed, without any changes being made to the upper layers. Sim-
ilarly, most changes to the user interface or the database structure can end at
the interface that is transforming data models between the presentation and the
timetabling layers.

6 Practical Issues Arising During Implementation

In the course of developing a system that is useable in practice, it was necessary
to confront a number of issues that are not typically addressed in the literature on
timetabling, but which are critical to successful implementation. These included
issues of the “fairness” of a solution across all departments with classes being
timetabled, the ease of introducing changes after a solution has been generated,
and the ability to check and resolve inconsistencies in input data.

6.1 Competitive Behavior

A complicating aspect of real timetabling problems is that there is competition
for preferred times and rooms. Hard and soft constraints placed on the problem
are often reflective of this competitive behavior (e.g., limited instructor time
availability, restrictive room requirements).

Hard constraints limit the solution space of the problem to reflect the needs
or desires of those who place them. Soft constraints introduce costs into the
objective function when violated. In either case, the more constraints placed on
the problem by a particular class, instructor, or class offering department, the
greater influence they will have on the solution. The general effect is to weight the
solution in the favor of those who most heavily constrain the problem. This can
create both harder problems to solve and solutions that are perceived as unfair
by other affected groups or individuals. Inequity in the quality of time and room
assignments received by different departments and faculty members doomed a
previous attempt at automating the timetabling process at Purdue [12].



To counteract the tendency of the solution to favor those who place the
most restrictions, a number of market leveling techniques were employed while
modeling and solving the problem. The first was to weight the value of time
preferences inversely proportional to the amount of time affected. A class with
few restrictions on the times it may be taught has those restrictions more heavily
weighted than a class with many restrictions. The intent is to make the total
weight of all time restrictions on any class roughly equal. A second technique
used in the solver was to introduce a balancing constraint. This is a semi-hard
constraint in that it initially requires the classes offered by each department to
be spread equitably across all times available for the class, but is automatically
relaxed to become a cost penalty for poorly distributing time assignments if the
desired distribution is overly constraining. Addressing this aspect of the real
world problem was a key component of gaining user acceptance.

6.2 Interactive Changes

While it was known early that it would be necessary to deal with changes after
an initial solution was found, it became clear the first time the system was used
in practice that an interactive mode for exploring the possibility of changes, and
easily making them, would be necessary. Following the philosophy of wanting
to minimize the number of changes needed to a solution [4, 15], an approach
was developed to present all feasible solutions (and their costs) that can be
reached via a backtracking process of limited depth. The user is allowed to make
the determination of the best tradeoff between accommodating a desired change
and the costs imposed on the rest of the solution with a knowledge of what those
costs will be. A further refinement was to allow some of the hard constraints to
be relaxed in this mode. This means, for instance, that the user can put a class
into a room different from the ones that were initially required.

Figure 4 displays a list of suggestions (nearby feasible solutions) for reassign-
ing a selected class. The user may either pick one of these alternative solutions,
ask the solver to provide additional suggestions by increasing the search depth
(changes in up to two class placements are allowed by default), or assign the
class manually by selecting one of the possible placements. In this last case, a
list of conflicting classes is shown together with a list of suggestions for resolving
these conflicts. The user may either apply the selected assignment (which will
cause all the conflicting classes to be unassigned), pick one of the suggestions,
or start resolving the conflicts manually by selecting a new placement for one of
the conflicting classes. This process can continue until all conflicts are resolved
manually or a suggestion resolving all the remaining conflicts is found.

6.3 Data Consistency

Often during the early stages of the timetabling process, the input data provided
by schedule managers are inconsistent. This means that the problem is over-
constrained, without any complete feasible solution. A very important aspect
of the timetabling system is therefore an ability to provide enough information



Fig. 4. User interface showing a list of suggestions provided to the user for a class.

back to the timetablers describing why the solver is not able to find a complete
solution.

In prior work on this problem [15], a learning technique, called conflict-based
statistics, was developed that helps the solver to escape from a local optimum.
This helps to avoid repetitive, unsuitable assignments to a class. In particular,
conflicts caused by a past assignment, along with the assignment that caused
them, are stored in memory. This learned information gathered during the search
is also highly useful in providing the user with relevant data about inconsistencies
and for highlighting difficult situations occurring in the problem.

7 Implemented System

The system being implemented at Purdue University has been designed as a
multi-user application with a completely web-based interface. The primary tech-



nologies used are the Enterprise Edition of Java 2 (J2EE), Hibernate, and an
Oracle database.

From the initial planning stages, it was recognized that there were a wide va-
riety of timetabling needs in different University departments and a wide range
in departmental schedule manager’s comfort level with automating the time-
tabling process. The application has, therefore, been conceived of as a flexible
tool to help departmental timetablers with the process rather than a completely
automatic system without human interaction.

At the time of this writing, the automated timetabling system has been used
to create the large lecture timetable for the past three terms. It has also been
used by the computing lab manager and seven departmental or college schedule
managers to solve a range of different problems for the past term. The system
is planned to be implemented campus-wide in January 2007 for developing the
fall timetable. Prior to full scale use, considerable training is planned for sched-
ule managers. Individuals with experience manually creating timetables are not
necessarily used to formulating the rules they use as a set of constraints. Some
schedule managers seem apprehensive about spelling out, even for themselves,
the actual decision rules and priorities they apply when constructing a timetable.
This may be because many decisions are based on political rather than objec-
tive criteria. For the initial campus-wide implementation, therefore, users who
are more comfortable with their manually developed timetables will only be re-
quired to use the system for entry of class data and checking for inconsistencies
in their solution. Departments that want to use all or most of the features of
the system will be trained to use the solver on the constraints they enter. It is
anticipated that the departmental schedule managers will want to use more and
more capabilities as they become comfortable with the system and experienced
with using the solver to help place additional classes.

7.1 Spring 2007 Timetables

Table 4 shows a summary of solutions for the individual problems that were
discussed in Section 2.2, i.e., the large lecture problem (LLR), the centrally
timetabled computer laboratory problem (LAB), and two different departmen-
tal problems (D1, D2). The column titled final contains the results that were
produced by schedule deputies using the timetabling application for Spring 2007.
These solutions were initially computed individually using the automated solver;
however, changes were also made using the interactive solver. The column run
separately contains results from 10 individual test runs. The LLR problem was
solved first. Problems D1 and D2 were solved on top of the LLR solution. The
LAB problem was solved at the end, on top of the LLR, D1 and D2 solutions that
were produced in the same test run. In each row, the average and RMS (root-
mean-square) variances of the best solutions found within a 30 minute time limit
are displayed. The column run combined contains average results from 10 com-
bined test runs. In these tests, all four problems were solved together within a
120 minute long time frame.



Table 4. Individual Solution Properties of Four Problems

LLR (804 variables) Final Run Separately Run Combined

Time [min] - 5.2± 4.9 -
Student conflicts 1207 756.8± 25.1 723.6± 28.0
Preferred time [%] 84.7 89.9± 0.7 89.7± 1.7
Preferred room [%] 88.9 91.9± 0.9 92.0± 0.8
Preferred distribution [%] 66.7 87.5± 5.9 70.0± 6.0

D1 (440 variables) Final Run Separately Run Combined

Time [min] - 20.8± 3.6 -
Student conflicts 11 12.3± 2.3 13.2± 4.1
Preferred time [%] 67.4 78.8± 2.0 81.1± 1.4
Preferred room [%] 76.2 78.2± 2.2 77.1± 1.6
Preferred distribution [%] 57.1 61.9± 4.1 67.4± 4.5

D2 (69 variables) Final Run Separately Run Combined

Time [min] - 0.08± 0.07 -
Student conflicts 3 0.6± 1.0 3.4± 1.7
Preferred time [%] 81.6 95.9± 1.0 95.9± 1.7
Preferred room [%] 100.0 100.0± 0.0 100.0± 0.0
Preferred distribution [%] 100.0 100.0± 0.0 100.0± 0.0

LAB (443 variables) Final Run Separately Run Combined

Time [min] - 5.3± 3.4 -
Student conflicts 14 14.0± 0.0 14.2± 0.4
Preferred time [%] 87.6 94.5± 1.4 96.6± 0.8
Preferred room [%] 75.8 78.8± 0.5 78.6± 0.8
Preferred distribution [%] 68.0 75.5± 4.2 78.0± 3.4

During work on the Spring 2007 data set, the solver was able to provide con-
sistent solutions of high quality. The difference in properties between solutions
to individual problems are caused primarily by differences in the characteristics
of these problems. For example, there are 27,881 students involved in the LLR
problem, with each student taking 3.15 LLR classes on average, but there are
only 8,408 students in LAB problem, with each students taking only 1.14 LAB
classes. Section 2.2 discusses these differences in more detail. The input data for
each department has also been entered by a different schedule manager for each
problem and there are sizable differences in the number and quality of prefer-
ences/requirements entered by each manager. This leaves the solver with a much
different capacity for optimization in each problem. In many cases, the managers
seem to be trying to convince the solver to mimic the properties of the manu-
ally made solutions they were accustomed to. In particular, the large increase
in student conflicts between the computed best solution and the final solution
committed by the schedule manager in the large lecture problem is largely at-
tributable to adjustments to accommodate faculty time preferences. These had



been the primary criteria in manually building timetables since data on student
conflicts were not available to be considered in the past.

7.2 Data Sets

Input data sets for the timetabling problems discussed above are available in an
easily readable XML format at http://www.unitime.org. In order to comply
with data security policies, these data sets have been purged of all private infor-
mation; however, they do retain all of the complexity of the Purdue University
timetabling problem that has been encountered so far. Future expansion of these
pages will include new timetabling input data sets as well as additional informa-
tion about ongoing research. A verification mechanism may also be developed
for solutions to the timetabling problems that have been included, as well as
an open-source version of the timetabling solver and/or the entire timetabling
application. It is hoped that the format in which the data are presented on this
page will create a foundation for a widely acceptable format for interchange of
complex university course timetabling benchmarks.

8 Conclusions

Based on the results of this project, it is clear that complex university course
timetabling problems can be solved at a level where these solutions are of prac-
tical use in the real world. Creating systems to do so is still not an easy process,
but it is possible to develop effective solutions using methods that are readily
available. The biggest challenges at this point appear to be understanding the
structures in the problem being considered and addressing the concerns that
users have with timetabling beyond the basic solution method.

Considering the problem in a layered framework (constraint satisfaction,
course timetabling, presentation) was of significant help in developing a flexible
enough approach to solving the problem that it could withstand the numerous
adaptations necessary to extend the solution capabilities to cover the university-
wide problem. This type of framework may also be useful for considering other
types of problems. The examination timetabling problem, for example, would fit
nicely on top of the solver used here with a new data model in the presentation
layer and some adaptation to the timetabling model.

Creating a data model that can simplify the complex course structures en-
countered into a more manageable series of classes is also very important. While
it is still likely that institutions with significantly different structures for their
courses will require different data models, and possibly some difference in their
timetabling models, it is clear from the work that has been done here that with
sufficient effort it is possible to develop models comprehensive enough to be used
on a wide set of problems. Aside from some interfaces for importing data from
other systems, the timetabling application developed as a result of this project
should be usable at a large number of other universities with similar complexity
in course structures.



References

1. Slim Abdennadher and Michael Marte. University course timetabling using con-
straint handling rules. Journal of Applied Artificial Intelligence, 14(4):311–326,
2000.

2. Mahmood Amintoosi and Javad Haddadnia. Feature selection in a fuzzy student
sectioning algorithm. In Edmund Burke and Michael Trick, editors, Practice and
Theory of Automated Timetabling V, pages 147–160. Springer-Verlag LNCS 3616,
2005.

3. Jean Aubin and Jacques A. Ferland. A large scale timetabling problem. Computers
and Operations Research, 16(1):67–77, 1989.

4. Roman Barták, Tomáš Müller, and Hana Rudová. A new approach to modeling
and solving minimal perturbation problems. In Recent Advances in Constraints,
pages 233–249. Springer Verlag LNAI 3010, 2004.

5. Hadrien Cambazard, Fabien Demazeau, Narendra Jussien, and Philippe David.
Interactively solving school timetabling problems using extensions of constraint
programming. In Edmund K. Burke and Michael Trick, editors, Practice and
Theory of Automated Timetabling V, pages 190–207, 2005.

6. Michael W. Carter. A comprehensive course timetabling and student scheduling
system at the University of Waterloo. In Edmund Burke and Wilhelm Erben,
editors, Practice and Theory of Automated Timetabling III, pages 64–82. Springer-
Verlag LNCS 2079, 2001.

7. Michael W. Carter and Gilbert Laporte. Recent developments in practical course
timetabling. In Edmund Burke and Michael Carter, editors, Practice and Theory
of Automated Timetabling II, pages 3–19. Springer-Verlag LNCS 1408, 1998.

8. Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.
9. Christelle Guéret, Narendra Jussien, Patrice Boizumault, and Christian Prins.

Building university timetables using constraint logic programming. In Edmund
Burke and Peter Ross, editors, Practice and Theory of Automated Timetabling II,
pages 130–145. Springer-Verlag LNCS 1153, 1996.

10. A. Hertz. Tabu search for large scale timetabling problems. European Journal of
Operational Research, 54(1):39–47, 1991.

11. Barry McCollum. University timetabling: Bridging the gap. In Edmund K. Burke
and Hana Rudová, editors, PATAT 2006 — Proceedings of the 6th International
Conference on the Practice and Theory of Automated Timetabling, pages 15–35.
Masaryk University, 2006.

12. Edward L. Mooney, Ronald L. Rardin, and W.J. Parmenter. Large scale classroom
scheduling. IIE Transactions, 28(5):369–378, 1996.

13. Tomáš Müller. Constraint-based Timetabling. PhD thesis, Charles University in
Prague, Faculty of Mathematics and Physics, 2005.

14. Tomáš Müller, Roman Barták, and Hana Rudová. Conflict-based statistics. In
J. Gottlieb, D. Landa Silva, N. Musliu, and E. Soubeiga, editors, EU/ME Work-
shop on Design and Evaluation of Advanced Hybrid Meta-Heuristics. University of
Nottingham, 2004.

15. Tomáš Müller and Roman Barták Hana Rudová. Minimal perturbation problem
in course timetabling. In Edmund Burke and Michael Trick, editors, Practice and
Theory of Automated Timetabling V, pages 126–146. Springer-Verlag LNCS 3616,
2005.

16. Sanja Petrovic and Edmund K. Burke. University timetabling. In Joseph Y-T.
Leung, editor, The Handbook of Scheduling: Algorithms, Models, and Performance
Analysis, chapter 45. CRC Press, 2004.



17. Andrea Qualizza and Paolo Serafini. A column generation scheme for faculty
timetabling. In Edmund Burke and Michael Trick, editors, Practice and Theory of
Automated Timetabling V, pages 161–173. Springer-Verlag LNCS 3616, 2005.

18. Hana Rudová and Keith Murray. University course timetabling with soft con-
straints. In Edmund Burke and Patrick De Causmaecker, editors, Practice and
Theory of Automated Timetabling IV, pages 310–328. Springer-Verlag LNCS 2740,
2003.

19. Andrea Schaerf. A survey of automated timetabling. Articifial Intelligence Review,
13(2):87–127, 1999.


