
UniTime
Best Practices

June 2017 Tomáš Müller, Zuzana Müllerová

Agenda

Agenda
• Short introduction of UniTime & workshop instance
• Administration (installation, setup, data exchange, modeling, …)
• Data Entry (rooms, instructors, courses, …)
• Timetabling
• Other Features (reporting, scripts, …)
• Conclusions

Presentation available at www.unitime.org/present/apereo17-workshop.pdf

UniTime

What is UniTime?
• Comprehensive academic scheduling solution

• Four components
• Course timetabling
• Examination timetabling
• Student scheduling
• Event management

• Open source, web-based, written in Java using modern technologies

• Using state-of-the-art optimization algorithms

• Distributed data entry and timetabling in multi-user environments

• First used at Purdue University in 2005

• Apereo project since 2015

UniTime	Demo	Instance

Workshop Demo Instance
• A college with about 6,000 students

• 24 departments entering the data

• Distributed data entry, centralized timetabling
• Distance learning timetabled separately
• For this workshop, the timetabling has been decentralized

• Shared resources (especially rooms)

• Student demands based on curricula

• Loosely based on the College of Education, Masaryk University

• Web: demo.unitime.org/workshop

• Accounts: user001/pwd001 … user051/pwd051

demo.uni4me.org/workshop
User Department Courses Classes Instructors

20, 26, 48 Art 57 154 43
38, 40 Biology 33 111 41
14, 49 Civics 58 95 21

17, 18, 28, 42 Czech 114 225 32
15, 30, 36 English 157 250 50

1, 22 French 56 81 18
24, 33 Geography 25 43 19

8, 12, 34 German 78 133 20
27, 47 Health Ed 21 39 17
6, 32 History 39 93 49
4, 45 IT 49 95 20
9, 10 Language

Center
23 89 14

23, 25, 29 Mathematics 53 104 27
41, 51 Music 59 196 17
37, 46 Pedagogy 17 76 28

2, 7, 31, 35, 43 Physics 170 416 84
5, 19 Prime Ped 34 99 16
16 Psychology 40 109 14

21, 39 Physical Ed 24 64 16
11, 50 Russian 83 156 18

13 Social Ed 89 136 75
3, 44 Special Ed 135 231 74

Username:
 user001

Password:
 pwd001

Username:
 user051

Password:
 pwd051

UniTime

Administration

UniTime	Setup

Installation
• UniTime can be downloaded from http://builds.unitime.org
• Installation Instructions: help.unitime.org/Timetabling_Installation

• See Windows / Linux specific notes at the bottom of the page

• Hardware Requirement
• Any system capable of running Java and MySQL/Oracle
• Linux is recommended, should have enough memory, could be a VM
• E.g.: 8 cores, 12 GB RAM, 100 GB drive
• Oracle database is recommended for production environments

• Prerequisites

• Java, MySQL or Oracle Database, Apache Tomcat

• For larger institutions (and especially when students can access)

• Cluster containing web servers and remove solver serves

Do not forget the -Xmx parameter and the MySQL/Oracle JDBC driver!

UniTime	Setup

Cluster
• One or more web servers (Apache Tomcat / UniTime.war)
• One or more remote solver servers (Java)
• JGroups Clusters

• Hibernate L2 Cache (web servers only)
• Solver Cluster (RPCs)
• Online Student Scheduling Server replications (optional)

Distributed
Data Entry
Distributed
Data Entry

Web
Server(s)

Distributed
Data Entry
Distributed
Data Entry

Solver
Server(s)

MySQL / Oracle Database

RPCs (Solver)

JDBC JDBC

Online
Enrollments

Hibernate
L2 CacheA

pa
ch

e
Se

rv
er

U
se

rs
 /

H
T

T
PS AJP

UniTime	Setup

Customization
• Custom properties

• Application Configuration page
• Custom properties file

• Custom CSS, welcome message, disclaimer,  
menu content & style

• Much more, see the Application Configuration page for the list

Authentication
• By default, the Users page is used
• CAS or LDAP can be configured (or anything else using Spring Security)
• We need an external ID of an authenticated user

• Students, Instructors, Timetable Managers
• No match: No Role or Anonymous (can be disabled)

See http://help.unitime.org/Customizations for more details.

UniTime	Setup

Localization
• Current locales: en, en_UK, cs
• Use en_UK to switch UniTime to use 24h times and dd.mm.yyyy dates
• Default can be set using unitime.locale property

• Can be changed per user (User Settings),
• or for HTTP session with the locale parameter

• Other translations exist but are mostly incomplete and/or have not
been contributed back to UniTime

Translations
• Translations are provided in property files
• Zanata can be used to provide translations

See http://help.unitime.org/Localization for more details.
See https://demo.unitime.org/UniTime?locale=cs for UniTime in Czech.

UniTime	Setup

Initial Configuration
• User Roles & Permissions

• Each permission contains a check (e.g., a schedule manager can only
edit classes of his/her department when allowed by session status)

• Statuses (Initial Data Load, Data Entry, Timetabling, Published, Closed)

• Instructional Types (Lecture, Lab, Recitation, …)

• Room Types (Classroom, Computing Lab, Outside Location, …)

• Room Feature Types (Seating Type, Room Configuration, A/V, …)

• Many more (course types, instructional methods, position types, …)
• See items under Administration > Other menu

• Solver Configuration (could be done much later, based on the data)

UniTime contains good default data for these.

UniTime	Setup

Academic Session
• Dates

• Session start date
• Examination start date,
• Holidays, …

• Date Patterns
• Time Patterns
• Examination Periods

• Departments
• Subject Areas
• Solver Groups
• Timetabling Managers

See the online demo http://demo.unitime.org for some examples.

Department
• Most of the UniTime data are

related to a particular
department

• Instructors, room sharing,
managers (permissions),
solver groups, etc.

• External manager department for
classes that are to be timetabled
outside of the subject area
(e.g., computing labs, large lecture
rooms)

UniTime	Setup

Date Patterns
• Weeks of instructions (All weeks, Even/Odd weeks, Week 5, …)

Time Patterns
• Possible time slots within a week

UniTime	Setup
Data Exchange

• A lot of the data can be imported via XML
• Departments, subject areas, rooms, staff, …
• Beware: rooms and staff do not get imported directly

• Rooms: use Update Data on the Buildings page
• Staff: use Manage Instructor List on the Instructors page

• Course Offerings XML can be used to import just courses, the whole
structure, or anything in between

APIs
• Mostly to get data out of UniTime in real time
• Can be extended as needed
• Can be also used to import/export XMLs programmatically

See http://www.unitime.org/uct_interfaces.php for the list of XML interfaces.
See https://goo.gl/L1sEVN for UniTime 4.2 APIs.

UniTime	Setup
Academic session roll-forward

• When there already are academic sessions in UniTime

• Roll-forward most of a session’s data

• Possible to combine data from different sessions

• After roll-forward, it is possible to still use XMLs to update the data

Data Entry

Automated
Timetabling

Timeline

Classes
start

Timetable
published

Classes
end

Data imports
Previous term data

Student
Scheduling

Timetable
Adjustments

Additional Timetable
Changes

Data Entry
Next semester timetabling

Roll-forward

UniTime	Setup

Best Practices: UniTime Setup
• Make sure UniTime has enough memory, especially for the solver
• Departments & subject areas need to be carefully defined

• Instructors, room sharing, data entry / access
• Distributed or centralized data entry and/or timetabling

• Most often: distributed data entry, centralized timetabling
• Student Course Demands

• Last-like demands are the easiest to get, but may not be as good
• Student course requests allows for individual students to be

considered
• Curricula are good, when available

(can be combined with last-likes for optional course estimates)

UniTime

Data Entry

Data	Entry:	Rooms

Rooms
• Each department may have a different set of rooms
• Some times may be unavailable or given to a different department

• Room coordinates (GPS), travel times (in minutes)
• Room groups and room features
• Rooms / non-university locations

Data	Entry:	Rooms
Best Practices: Rooms

• Room features can be categorized by feature types
(seating type, desk arrangements, audio/video, …)

• Having good room groups and room features helps with preferences
• Think about the faculty preferences you may get

(E.g., I want a room with a white board and a data projector, which
could be used both at the same time)

• Approved events can be used to block certain times in a room.
• There can be pseudo rooms that do not check for overlaps

(E.g., off-campus, instructor’s office, hospital)
• Dept. room preferences are useful to minimize use of a room

• Prohibited … cannot be used (for what-if scenarios)
• Strongly Discouraged … only when there is a direct preference
• Discouraged … minimize use of the room (avoid if possible)

Data	Entry:	Instructors

Instructors
• Each department has a list of instructors

• Connection between departments through external id
• Instructor availability (prohibited times)
• Instructor preferences & requirements

• Time, room, distribution

Data	Entry:	Instructors

Best Practices: Instructors
• Use instructor preferences in combination with subpart preferences

• Especially time availability and preferences
• Useful Distribution Preferences *

• Max N Hours
• N Hour Work Day
• Max Blocks
• Max Breaks
• N Days a Week

*) Some need to be registered first, see https://goo.gl/ufqW1t for the scripts.

Data	Entry:	Courses

Instructional Offering

Data	Entry:	Courses

Course Offerings
Instructional Offering

Data	Entry:	Courses

Instructional Offering

Scheduling Subparts

Course Offerings

Data	Entry:	Courses

Instructional Offering

Scheduling Subparts

Classes

Course Offerings

Data	Entry:	Preferences

Best Practices: Courses
• There can be multiple configurations

(with different instructional method, e.g., traditional x online)
• If a class does not follow a standard time pattern, it could be split
• Reservations can be used to direct students to the appropriate

configurations / classes
• Use cross-lists whenever a course is offered under multiple names
• Meet together constraint can be useful, but use it wisely
• Externally managed departments can be used to timetable some

classes as a different problem (large lecture rooms, computing labs)
• It is possible to move control of such classes from the department

of the course to the external department with a status change

Data	Entry:	Preferences

Best Practices: Subparts and Classes
• Minimal room size: room ratio times class limit
• Classes of a scheduling subpart are spread in time (can be disabled)
• Only matching time patterns are visible

• E.g., minutes per week = number of meetings × minutes per meeting
• Too many start times result in a bad timetable

• Too many small holes, hard to swap rooms

Data	Entry:	Preferences
Best Practices: Preferences

• Preferences can be set on scheduling subpart, class, or instructor
• The end result is displayed on the class and used by the solver
• Put as many preferences as possible on instructors and subparts

• Class overrides can be highlighted in yellow unitime.preferences.highlightClassPrefs

Data	Entry:	Input	Data

Importance of having good input data
• The solution will only be as good as the input data
• No preferences

• A class can end up anywhere (unpopular time, wrong room)
• Too many requirements

• Impossible to find a complete timetable
• Too many student conflicts
• Difficult to make modifications

UniTime

Solver

Timetabling:	Solver
Constraint-based Solver

• Can be used in modes between manual and fully automated
• State of the art
 ◦ Work published a number of research papers
 ◦ Winner of the International Timetabling Competition 2007

• Easy to extend

Timetabling:	Problem

Model
• Variable: class
• Value: time and room placement

Hard Constraints
• Room size, sharing, availability
• No instructor / room can have two classes at the same time
• Required or prohibited preferences

Soft Constraint (Objectives)
• Time, room, and distribution preferences
• Student conflicts
• Additional criteria (too big rooms, back-to-back instructors, …)

Timetabling:	Solver

Using the Solver
1. Make sure the problem has a solution

• All classes are assigned

• Using check configuration
• Conflict-statists can be used to discover issues

Timetabling:	Solver

Using the Solver
1. Make sure the problem has a solution
2. Run the solver to produce a timetable

• Using default configuration
• It is possible to iterate (if needed),
 or start the solver from
 the previous timetable

Timetabling:	Solver

Using the Solver
1. Make sure the problem has a solution
2. Run the solver to produce a timetable
3. Once there is a decent timetable

• Make manual changes, using interactive configuration

Solver Configuration: it is possible to tweak solver parameters if needed
 (there is a tradeoff between times, rooms, distributions, and student conflicts)

Timetabling:	Making	Changes

Making changes
1. Minimal Perturbation Mode (MPP)

• When many changes are needed

• Fully automated (default configuration with the mode set to MPP)
• Additional criterion: changes from the initial solution
• Different weights, e.g., time changes are usually more penalized

2. Once there is a timetable saved, use the interactive configuration
• Can break some constraints
• Solver provides suggestions, but does not make any decisions

3. When the timetable is published
• Changes can be made without loading the data into the solver

Timetabling:	Coopera4on

Decentralized Timetabling
• Defined by solver groups

• One or more departments that are to be solved together
• Committed solutions of other problems are used as basis
• Multiple problems can be solved together, manual changes can be

made separately

Externally Managed Classes
• For instance, distance learning classes are solved separately
• Different set of rooms
• Timetabled before or after the departmental problems
• Other examples: large lecture rooms, computing labs, need room

Timetabling:	Publica4on

Publication
• A committed timetable can be published by changing the status on

the academic session
• Instructors and students can see the timetable
• Next steps

• Export to an external system
• Student scheduling
• Examination timetabling
• Event management

Best	Prac4ces:	Timetabling

Best practices: Solver
• Multiple problems can be timetabled together
• Multiple solutions can be saved
• It is important to commit a solution when you wish the assignments

to show in other problems
• Use distribution preference priority for problems that are solved

before or after the departmental problems (see Departments page)
• Use Reload Input Data when there is a change in the inputs

• Use Chameleon if you want to run several solvers at once
• Create several timetables, then choose the best one

Best	Prac4ces:	Timetabling

Best practices: Solver parameters
• Optimization can usually be achieved by setting up a combination of

solver parameters
• Example: Hard conflict weights
• Example: No student conflicts
• Example: Times are way more important than rooms
• Distance conflict settings (student speed, distances between non

back-to-back classes, …)
• Automatic distribution constraints
• …
• Try experiment with various solver settings

Best	Prac4ces:	Timetabling

Best practices: Making Changes
• Use the Interactive solver (from the Timetables page) to be able to

break some hard constraints
• MPP penalization can tell the solver what changes are hard
• Do not use the solver when students are already being enrolled,

use Class Assignment page instead

UniTime

Other Features

Other:	Repor4ng

Custom Reports
• Written in HQL (Hibernate Query Languages)
• Can have parameters (current session, department, subject area, …)
• Lines can be clickable
• Export to CSV
• Example reports are available in UniTime
• Requires knowledge of the UniTime data model

Point In Time Reports
• Snapshot of current state of students and their registration, class limits, etc.
• Using the Data Exchange page
• Multiple snapshots can be imported
• Full set of reports (weekly class hours, room utilizations, etc.)
• Roll forward

See http://help.unitime.org/Course_Reports for more details.

New in UniTime 4.2

Other:	Scripts

Scripts
• Using JSR 223: Scripting for the Java Platform
• JavaScript or Python, can call UniTime methods

• For Python, put Jython Standalone JAR to Tomcat/libs
• Can have parameters (including a file)
• Can produce a file
• Convenient for additional administrative tasks, custom CSV imports

and exports, etc.
• Some examples are available at https://goo.gl/ufqW1t
• Permission (users with the given permission can run the script)
• Requires knowledge of the UniTime code base

See http://help.unitime.org/Scripts for more details.

Other:	What-If	Scenarios

What-If Scenarios
• Use academic session export/import to copy a session to a test

instance
• Test session status can be used for multiple copies of the same session
• XMLs exports/imports or Scripts can be used to quickly manipulate

the data (there is a new XML for preferences in UniTime 4.2)
• Examples

• Building or room should become unavailable
• Change in time patterns
• Going from semesters to trimesters
• …

Conclusion

UniTime
• Comprehensive system
• A lot to configure, customize, or otherwise to do
• But the defaults work well

For more details, please see us at the conference
• UniTime: Best Practices (Sunday, 1:30pm - 4:30pm in Flower)

• Case Study: UniTime at Masaryk University (Monday, Showcase Reception)

• UniTime 4.2: Instructor Scheduling (Tuesday, 10:15am - 11:00am in Flower)

• Course Timetabling Around the World (Tuesday, 2:30pm - 3:15pm in Flower)

• Or visit www.unitime.org

An online demo is available at https://demo.unitime.org

http://www.unitime.org

