

UniTime Best Practices

Tomáš Müller, Zuzana Müllerová

UNITIME

Agenda

- Short introduction of UniTime & workshop instance
- Administration (installation, setup, data exchange, modeling, ...)

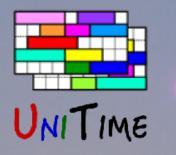
Agenda

- Data Entry (rooms, instructors, courses, ...)
- Timetabling
- Other Features (reporting, scripts, ...)
- Conclusions

Presentation available at www.unitime.org/present/apereo17-workshop.pdf

UniTime

What is UniTime?


- Comprehensive academic scheduling solution
- Four components
 - Course timetabling
 - Examination timetabling
 - Student scheduling
 - Event management
- Open source, web-based, written in Java using modern technologies
- Using state-of-the-art optimization algorithms
- Distributed data entry and timetabling in multi-user environments
- First used at Purdue University in 2005
- Apereo project since 2015

UniTime Demo Instance

Workshop Demo Instance

IME

- A college with about 6,000 students
- 24 departments entering the data
- Distributed data entry, centralized timetabling
 - Distance learning timetabled separately
 - For this workshop, the timetabling has been decentralized
- Shared resources (especially rooms)
- Student demands based on curricula
- Loosely based on the College of Education, Masaryk University
- Web: demo.unitime.org/workshop
- Accounts: user001/pwd001 ... user051/pwd051

demo.unitime.org/workshop

S.S. A. HARRING STATISTICS

.

STALL AND

User	Department	Courses	Classes	Instructors	
20, 26, 48	Art	57	154	43	
38, 40	Biology	33	111	41	
14, 49	Civics	58	95	21	Username:
17, 18, 28, 42	Czech	114	225	32	user001
15, 30, 36	English	157	250	50	
1, 22	French	56	81	18	Password:
24, 33	Geography	25	43	19	pwd001
8, 12, 34	German	78	133	20	
27, 47	Health Ed	21	39	17	
6, 32	History	39	93	49	•
4, 45	IT	49	95	20	•
9, 10	Language	23	89	14	
23, 25, 29	Mathematics	53	104	27	•
41, 51	Music	59	196	17	
37, 46	Pedagogy	17	76	28	Username:
2, 7, 31, 35, 43	Physics	170	416	84	user051
5, 19	Prime Ped	34	99	16	
16	Psychology	40	109	14	Password:
21, 39	Physical Ed	24	64	16	pwd051
<u>11, 50</u>	Russian	83	156	18	
13	Social Ed	89	136	75	
3, 44	Special Ed	135	231	74	

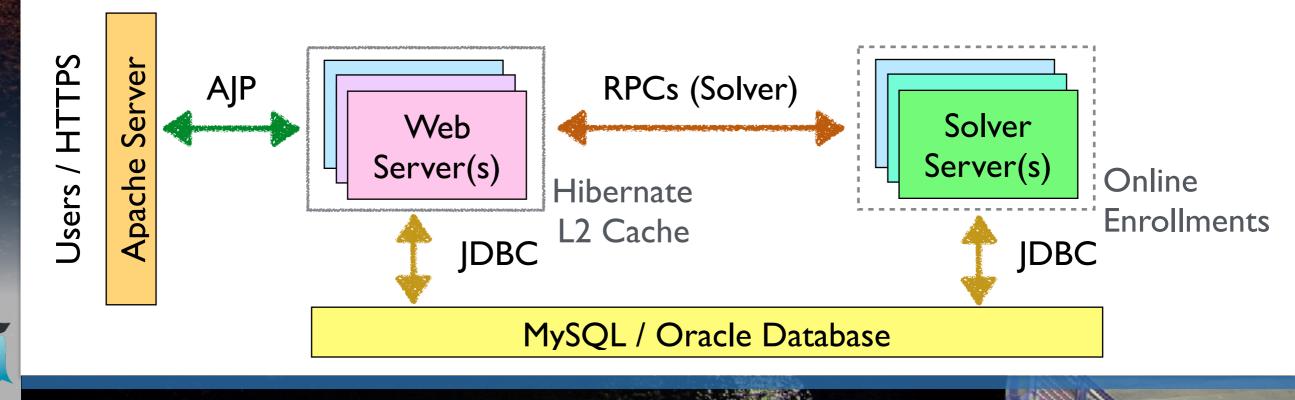
C

UniTime

Administration

UNITIME

Installation


- UniTime can be downloaded from http://builds.unitime.org
- Installation Instructions: help.unitime.org/Timetabling_Installation
 - See Windows / Linux specific notes at the bottom of the page
- Hardware Requirement
 - Any system capable of running Java and MySQL/Oracle
 - Linux is recommended, should have enough memory, could be a VM
 - E.g.: 8 cores, 12 GB RAM, 100 GB drive
 - Oracle database is recommended for production environments
- Prerequisites
 - Java, MySQL or Oracle Database, Apache Tomcat
- For larger institutions (and especially when students can access)
 - Cluster containing web servers and remove solver serves

Do not forget the -Xmx parameter and the MySQL/Oracle JDBC driver!

Cluster

UNITIME

- One or more web servers (Apache Tomcat / UniTime.war)
- One or more remote solver servers (Java)
- JGroups Clusters
 - Hibernate L2 Cache (web servers only)
 - Solver Cluster (RPCs)
 - Online Student Scheduling Server replications (optional)

Customization

TIME

- Custom properties
 - Application Configuration page
 - Custom properties file
- Custom CSS, welcome message, disclaimer, menu content & style

• Much more, see the Application Configuration page for the list

Authentication

- By default, the Users page is used
- CAS or LDAP can be configured (or anything else using Spring Security)
- We need an external ID of an authenticated user
 - Students, Instructors, Timetable Managers
 - No match: No Role or Anonymous (can be disabled)

See http://help.unitime.org/Customizations for more details.

Localization

ITIME

- Current locales: en, en_UK, cs
- Use en_UK to switch UniTime to use 24h times and dd.mm.yyyy dates
- Default can be set using unitime.locale property
 - Can be changed per user (User Settings),
 - or for HTTP session with the locale parameter
- Other translations exist but are mostly incomplete and/or have not been contributed back to UniTime

Translations

- Translations are provided in property files
- Zanata can be used to provide translations

See http://help.unitime.org/Localization for more details.

See https://demo.unitime.org/UniTime?locale=cs for UniTime in Czech.

Initial Configuration

- User Roles & Permissions
 - Each permission contains a check (e.g., a schedule manager can only edit classes of his/her department when allowed by session status)
- Statuses (Initial Data Load, Data Entry, Timetabling, Published, Closed)
- Instructional Types (Lecture, Lab, Recitation, ...)
- Room Types (Classroom, Computing Lab, Outside Location, ...)
- Room Feature Types (Seating Type, Room Configuration, A/V, ...)
- Many more (course types, instructional methods, position types, ...)
 - See items under Administration > Other menu
- Solver Configuration (could be done much later, based on the data)

UniTime contains good default data for these.

Academic Session

• Dates

ITIME

- Session start date
- Examination start date,
- Holidays, ...
- Date Patterns
- Time Patterns
- Examination Periods
- Departments
- Subject Areas
- Solver Groups
- Timetabling Managers

Department

- Most of the UniTime data are related to a particular department
- Instructors, room sharing, managers (permissions), solver groups, etc.
- External manager department for classes that are to be timetabled outside of the subject area (e.g., computing labs, large lecture rooms)

- Station All

See the online demo http://demo.unitime.org for some examples.

Jt.

UniTime Setup

Date Patterns

Weeks of instructions (All weeks, Even/Odd weeks, Week 5, ...)

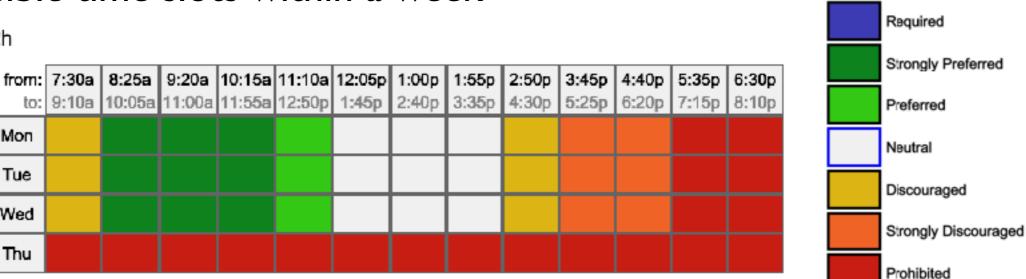
	March 2015												
	Sun	Mon	Tue	Wed	Thu	Fri	Sat						
10	1	2	3	4	5	6	7						
11	8	9	10	11	12	13	14						
12	15	16	17	18	19	20	21						
13	22	23	24	25	26	27	28						
14	29	30	31										

	April 2015												
	Sun	Mon	Tuə	Wed	Thu	Fri	Sat						
4				1	2	3	4						
5	5	6	7	8	9	10	11						
6	12	13	14	15	16	17	18						
7	19	20	21	22	23	24	25						
8	26	27	28	29	30								

	May 2015												
	Sun	Mon	Tue	Wed	Thu	Fri	Sat						
18						1	2						
19	з	4	5	6	7	8	9						
20	10	11	12	13	14	15	16						
21	17	18	19	20	21	22	23						
22	24	25	26	27	28	29	30						
23	31												

Time Patterns

2h


Mon

Tue

Wed

Thu

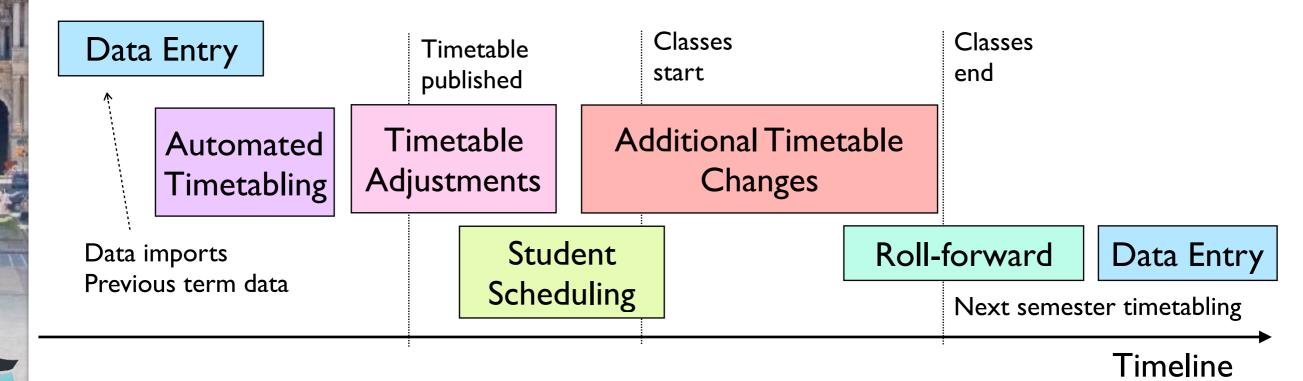
• Possible time slots within a week

Data Exchange

- A lot of the data can be imported via XML
- Departments, subject areas, rooms, staff, ...
- Beware: rooms and staff do not get imported directly
 - Rooms: use Update Data on the Buildings page
 - Staff: use Manage Instructor List on the Instructors page
- Course Offerings XML can be used to import just courses, the whole structure, or anything in between

APIs

ITIME


- Mostly to get data out of UniTime in real time
- Can be extended as needed
- Can be also used to import/export XMLs programmatically

See http://www.unitime.org/uct_interfaces.php for the list of XML interfaces. See https://goo.gl/LIsEVN for UniTime 4.2 APIs.

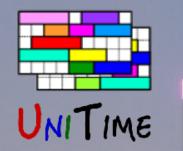
Academic session roll-forward

- When there already are academic sessions in UniTime
- Roll-forward most of a session's data
- Possible to combine data from different sessions
- After roll-forward, it is possible to still use XMLs to update the data

Best Practices: UniTime Setup

- Make sure UniTime has enough memory, especially for the solver
- Departments & subject areas need to be carefully defined
 - Instructors, room sharing, data entry / access
- Distributed or centralized data entry and/or timetabling
 - Most often: distributed data entry, centralized timetabling
- Student Course Demands

TIME


- Last-like demands are the easiest to get, but may not be as good
- Student course requests allows for individual students to be considered
- Curricula are good, when available (can be combined with last-likes for optional course estimates)

C

UniTime

Data Entry

Data Entry: Rooms

Rooms

- Each department may have a different set of rooms
- Some times may be unavailable or given to a different department
 K 73

Workd	lays × l	Daytim	в 🛊)																			
							10:30a 11:00a															
Моп																						
Tue	BIOL	BIOL	BIOL	BIOL	BIOL	BIOL	BIOL	BIOL	BIOL	BIOL	BIOL	BIOL	BIOL	BIOL	BIOL	B10L	BIOL	BIOL	BIOL	BIOL	BIOL	BIOL
Wed	CIVC	CIVC	CIVC	CIVC	CIVC	CIVC	CIVC	CIVC	CIVC													
Thu	CIVC	CIVC	CIVC	CIVC	CTVC	CIVC	CIVC	CIVC	CIVC													
Fri	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

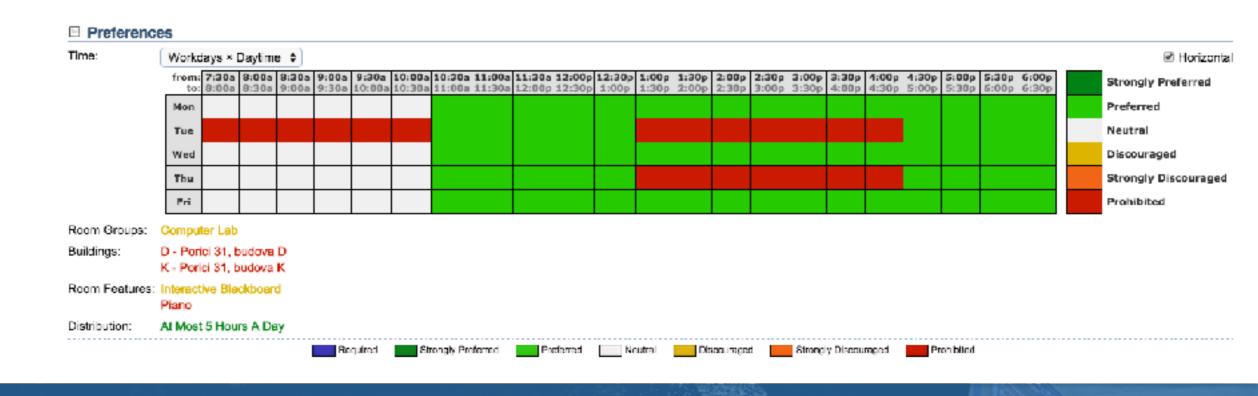
- Room coordinates (GPS), travel times (in minutes)
- Room groups and room features
- Rooms / non-university locations

	A 50	D 20	K 73	140A	JAMU	
A 50		5	5	19	22	A 50
D 20	5		0	17	20	D 20
K 73	5	0		17	22	K 73
140A	19	17	17		10	140A
JAMU	22	20	22	10		JAMU
	A 50	D 20	K 73	140A	JAMU	

Data Entry: Rooms

Best Practices: Rooms

TIME


- Room features can be categorized by feature types (seating type, desk arrangements, audio/video, ...)
- Having good room groups and room features helps with preferences
 - Think about the faculty preferences you may get (E.g., I want a room with a white board and a data projector, which could be used both at the same time)
- Approved events can be used to block certain times in a room.
- There can be pseudo rooms that do not check for overlaps (E.g., off-campus, instructor's office, hospital)
- Dept. room preferences are useful to minimize use of a room
 - Prohibited ... cannot be used (for what-if scenarios)
 - Strongly Discouraged ... only when there is a direct preference
 - Discouraged ... minimize use of the room (avoid if possible)

Data Entry: Instructors

Instructors

NITIME

- Each department has a list of instructors
 - Connection between departments through external id
- Instructor availability (prohibited times)
- Instructor preferences & requirements
 - Time, room, distribution

A HARD DESIGNATION

Data Entry: Instructors

Best Practices: Instructors

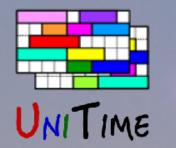
- Use instructor preferences in combination with subpart preferences
 - Especially time availability and preferences
- Useful Distribution Preferences *
 - Max N Hours

NITIME

- N Hour Work Day
- Max Blocks
- Max Breaks
- N Days a Week

*) Some need to be registered first, see https://goo.gl/ufqW1t for the scripts.

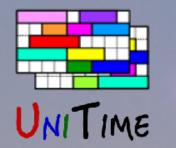
Instructional Offering


							Preference	əs	
	Limit	Date Pattern	Minutes F	Per Week	Time Pattern	Time	Room	Distribution	Instructor
1A 170 STAT 170	40	Statistics Introductory							
Lecture	40	Full Term		50	1 x 50		Classroom		
Laboratory	40	Full Term		150	3 x 50		EDUC CompPr	Same Room	
Lec 1	40	Full Term		50	1 x 50		ThtrSeat Classroom		G. Newman
Lab 1	20	Full Term		150	3 x 50		EDUC CompPr	Same Room	J. Smith
Lab 2	20	Full Term		150	3 x 50		EDUC CompPr	Same Room	J. Smith

Instructional Offering Course Offerings

							Preference	€	
	Limit	Date Pattern	Minutes Pe	r Week	Time Pattern	Time	Room	Distribution	Instructor
MA 170 STAT 170	40	Statistics Introductory							
Lecture	40	Full Term		50	1 x 50		Classroom		
Laborator	y 40	Full Term		150	3 x 50		EDUC CompPr	Same Room	
Lec 1	40	Full Term		50	1 x 50		ThtrSeat Classroom		G. Newman
Lab 1	20	Full Term		150	3 x 50		EDUC CompPr	Same Room	J. Smith
Lab 2	20	Full Term		150	3 x 50		EDUC CompPr	Same Room	J. Smith

Construction of the Address of the


Instructional Offering

Course Offerings

Scheduling Subparts

							Preference	S	
	Limit	Date Pattern	Minutes Per V	Veek	Time Pattern	Time	Room	Distribution	Instructor
MA 170 STAT 170	40	Statistics Introductory							
Lecture	40	Full Term		50	1 x 50		Classroom		
Laboratory	40	Full Term		150	3 x 50		EDUC CompPr	Same Room	
Lec 1	40	Full Term		50	1 x 50		ThtrSeat Classroom		G. Newman
Lab 1	20	Full Term		150	3 x 50		EDUC CompPr	Same Room	J. Smith
Lab 2	20	Full Term		150	3 x 50		EDUC CompPr	Same Room	J. Smith

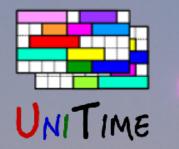
A PROPERTY AND A PROPERTY A

Instructional Offering

Course Offerings

Scheduling Subparts

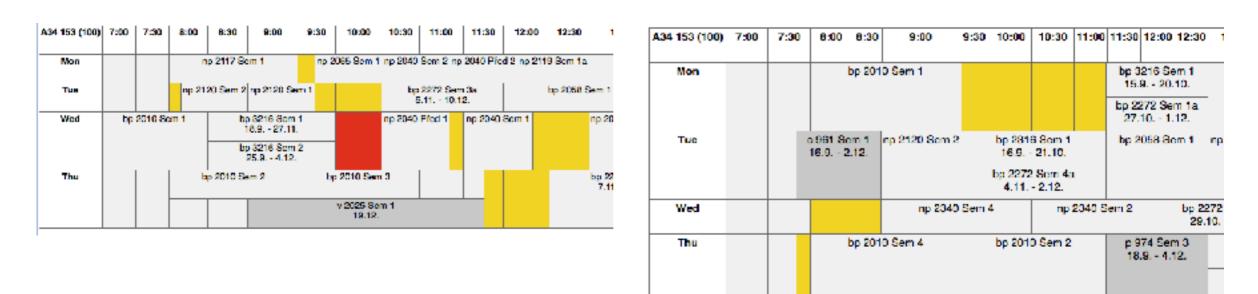
Classes


								Preference		
		Limit	Date Pattern	Minutes Per	Week	Time Pattern	Time	Room	Distribution	Instructor
I	MA 170 STAT 170	40	Statistics Introductory	-						
	Lecture	40	Full Term		50	1 x 50		Classroom		
	Laboratory	40	Full Term		150	3 x 50		EDUC CompPr	Same Room	
$\left(\right)$	Lec 1	40	Full Term		50	1 x 50		ThtrSeat Classroom		G. Newman
	Lab 1	20	Full Term		150	3 x 50		EDUC CompPr	Same Room	J. Smith
	Lab 2	20	Full Term		150	3 x 50		EDUC CompPr	Same Room	J. Smith

Data Entry: Preferences

Best Practices: Courses

IME


- There can be multiple configurations (with different instructional method, e.g., traditional x online)
- If a class does not follow a standard time pattern, it could be split
- Reservations can be used to direct students to the appropriate configurations / classes
- Use cross-lists whenever a course is offered under multiple names
- Meet together constraint can be useful, but use it wisely
- Externally managed departments can be used to timetable some classes as a different problem (large lecture rooms, computing labs)
 - It is possible to move control of such classes from the department of the course to the external department with a status change

Data Entry: Preferences

Best Practices: Subparts and Classes

- Minimal room size: room ratio times class limit
- Classes of a scheduling subpart are spread in time (can be disabled)
- Only matching time patterns are visible
 - E.g., minutes per week = number of meetings × minutes per meeting
- Too many start times result in a bad timetable
 - Too many small holes, hard to swap rooms

State of the second second

Data Entry: Preferences

Best Practices: Preferences

IME

- Preferences can be set on scheduling subpart, class, or instructor
- The end result is displayed on the class and used by the solver
- Put as many preferences as possible on instructors and subparts
 - Class overrides can be highlighted in yellow unitime.preferences.highlightClassPrefs

							Preference	∋s	
	Limit	Date Pattern	Minutes I	Per Week	Time Pattern	Time	Room	Distribution	Instructor
MA 170 STAT 170	40	Statistics Introductory							
Lecture	40	Full Term		50	1 x 50		Classroom		
Laboratory	40	Full Term		150	3 x 50		EDUC CompPr	Same Room	
Lec 1	40	Full Term		50	1 x 50		ThtrSeat Classroom		G. Newman
Lab 1	20	Full Term		150	3 x 50		EDUC CompPr	Same Room	J. Smith
Lab 2	20	Full Term		150	3 x 50		EDUC CompPr	Same Room	J. Smith

Data Entry: Input Data

Importance of having good input data

- The solution will only be as good as the input data
- No preferences
 - A class can end up anywhere (unpopular time, wrong room)
- Too many requirements
 - Impossible to find a complete timetable
 - Too many student conflicts
 - Difficult to make modifications

a

UniTime

Solver

Timetabling: Solver

Constraint-based Solver

- Can be used in modes between manual and fully automated
- State of the art

ITIME

Work published a number of research papers

Winner of the International Timetabling Competition 2007

• Easy to extend

Score	Class	Date	Time	Room	Students
+15.2	POL 101 Lec 3	Full Term	TTh 12:00p → TTh 7:30a	BRNG 2280	+11
+31.7	POI 101 Lec 3	Full Term	TTh 12.00p → TTh 10.30a	BRNG 2280	+36 (h+3)
	HIST 342 Lec 1	Full Term	TTh 10:30a \rightarrow TTh 1:30p	BRNG 2280 → BRNG 2290	
(36.6	POL 101 Lec 3	Full Term	TTh 12.00p → TTh 10.30a	BRNG 2280	<mark>ن 36 (h 4)</mark>
	HIST 342 Lec 1	Full Term	TTh 10.30a → TTh 7.30a	BRNG 2280	
+44 1	POL 101 Lec 3	Full Term	TTh 12:00p → TTh 10:30a	BRNG 2280	+34 (h+2)
	HIST 342 Lec 1	Full Term	TTh 10:30a → TTh 3:00p	BRNG 2280 → BRNG 2290	
	OBHR 330 Lec 4	Full Term	TTh 3:00p	BRNG 2290 → LWSN B155	

(all 15/1 possibilities up to 3 changes were considered, top 4 of 1/ suggestions displayed)

Search Deeper

Timetabling: Problem

Model

- Variable: class
- Value: time and room placement

Hard Constraints

- Room size, sharing, availability
- No instructor / room can have two classes at the same time
- Required or prohibited preferences

Soft Constraint (Objectives)

- Time, room, and distribution preferences
- Student conflicts
- Additional criteria (too big rooms, back-to-back instructors, ...)

Timetabling: Solver

Using the Solver

+

ITIME

- I. Make sure the problem has a solution
 - All classes are assigned
 - Using <u>check</u> configuration

• Conflict-statists can be used to discover issues

I5851×CS 110 Lec 1 6384× MW 1:30p - 2:20p Full Term EE 129 KING, ERIC J 6318× Instructor KING, ERIC J 5771× C S 110 Lec 2 ← MW 1:30p - 2:20p Full Term EE 129 KING, ERIC J 3541× MW 12:30p - 1:20p Full Term LILY 1105 KING, ERIC J 3019× Instructor KING, ERIC J 2931× C S 110 Lec 2 ← MW 12:30p - 1:20p Full Term LILY 1105 KING, ERIC J 3467× MW 12:30p - 1:20p Full Term EE 129 KING, ERIC J 3408× Instructor KING, ERIC J 2932× C S 110 Lec 2 ← MW 12:30p - 1:20p Full Term EE 129 KING, ERIC J 2459× MW 1:30p - 2:20p Full Term LILY 1105 KING, ERIC J F 1268× Room LILY 1105 ☐ 1265× BIOL 221 Lec 1 ← MWF 1:30p - 2:20p Full Term LILY 1105 SANDERS, DAVID 1191× Instructor KING, ERIC J ☐ 1191× C S 110 Lec 2 ← MW 1:30p - 2:20p Full Term LILY 1105 KING, ERIC J 15840× C S 110 Lec 2 2588× BIOL 221 Lec 1 338× AGEC 217 Lec 3

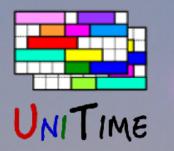
Timetabling: Solver

Using the Solver

TIME

- I. Make sure the problem has a solution
- 2. Run the solver to produce a timetable
 - Using default configuration
 - It is possible to iterate (if needed), or start the solver from the previous timetable

Туре	Course Timetabling Solver
Solver	Solving problem
Phase	Improving found solution
Progress	5 of 100 (5.0%)
Cwner	A. Root as ART & BIOL & CIVC & CZ & ENG & FRN &
Host	local Change Refresh
Session	Spring 2015 (ED)
Version	4.0.16
Assigned variables	100.00% (1813/1813)
Overall solution value	-17554.24
Time preferences	91.26% (-36722.00)
Student conflicts	807 [committed:0, distance:1, hard:177]
Room preferences	93.31% (-1385)
Distribution preferences	96.37% (-525.00)
Back-to-back instructor preferences	s 99.98% (1)
Too big rooms	19.84% (1280)
Useless half-hours	0.63% (0 + 1316)
Same subpart balancing penalty	36.58
Room Size Penalty	17.38
Perturbation variables	9.60% (154 + 8)
Perturbations: Total penalty	330.10
Time	0.06 min
Iteration	1940
Memory usage	1791.38M
Speed	520.45 Vs
Block Constraints	100% (0)
Important student conflicts	495 [hard: 34]


Using the Solver

IME

- I. Make sure the problem has a solution
- 2. Run the solver to produce a timetable
- 3. Once there is a decent timetable
 - Make manual changes, using *interactive* configuration

Score	Class	Date	Time	Room	Students
+15.2	POL 101 Lec 3	Full Term	TTh 12:00p \rightarrow TTh 7:30a	BRNC 2280	+11
+31.7	POI 101 Lec 3	Full Term	TTh 12:00p \rightarrow TTh 10:30a	BRNG 2280	+36 (h+3)
	HIST 342 Lec 1	Full Term	TTh 10:30a \rightarrow TTh 1:30p	BRNG 2280 → BRNG 2290	
136.6	POL 101 Lec 3	Full Term	TTh 12.00p → TTh 10.30a	BRNG 2280	نا 36 (h با 4)
	HIST 342 Lec 1	Full Term	TTh 10.30a → TTh 7.30a	BRNG 2280	
+44 1	POL 101 Lec 3	Full Term	TTh 12:00p → TTh 10:30a	BRNG 2280	+34 (h+2)
	HIST 342 Lec 1	Full Term	TTh 10:30a → TTh 3:00p	BRNG 2280 → BRNG 2290	
	OBHR 330 Lec 4	Full Term	TTh 3:00p	BRNG 2290 → LWSN B155	

Solver Configuration: it is possible to tweak solver parameters if needed (there is a tradeoff between times, rooms, distributions, and student conflicts)

Timetabling: Making Changes

Making changes

- I. Minimal Perturbation Mode (MPP)
 - When many changes are needed
 - Fully automated (default configuration with the mode set to MPP)
 - Additional criterion: changes from the initial solution
 - Different weights, e.g., time changes are usually more penalized
- 2. Once there is a timetable saved, use the *interactive* configuration
 - Can break some constraints
 - Solver provides suggestions, but does not make any decisions
- 3. When the timetable is published
 - Changes can be made without loading the data into the solver

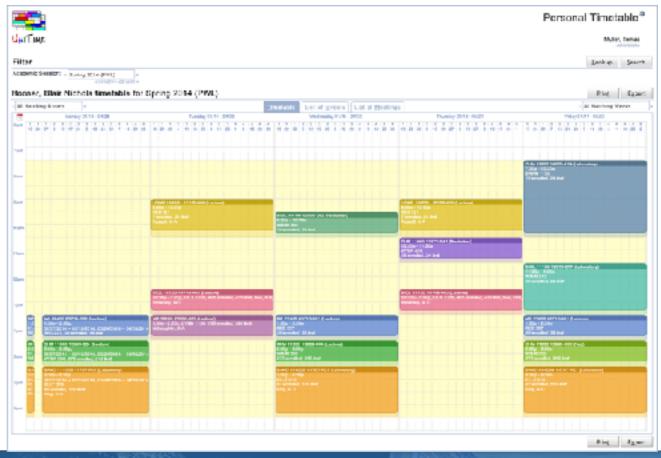
UNITIME

Timetabling: Cooperation

Decentralized Timetabling

- Defined by solver groups
 - One or more departments that are to be solved together
- Committed solutions of other problems are used as basis
- Multiple problems can be solved together, manual changes can be made separately

Externally Managed Classes

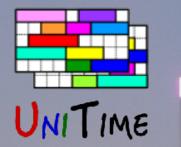

- For instance, distance learning classes are solved separately
- Different set of rooms
- Timetabled before or after the departmental problems
- Other examples: large lecture rooms, computing labs, need room

Timetabling: Publication

Publication

UNITIME

- A committed timetable can be published by changing the status on the academic session
- Instructors and students can see the timetable
- Next steps
 - Export to an external system
 - Student scheduling
 - Examination timetabling
 - Event management


UNITIME

H.

Best Practices: Timetabling

Best practices: Solver

- Multiple problems can be timetabled together
- Multiple solutions can be saved
- It is important to commit a solution when you wish the assignments to show in other problems
- Use distribution preference priority for problems that are solved before or after the departmental problems (see Departments page)
- Use Reload Input Data when there is a change in the inputs
- Use Chameleon if you want to run several solvers at once
- Create several timetables, then choose the best one

Best Practices: Timetabling

Best practices: Solver parameters

- Optimization can usually be achieved by setting up a combination of solver parameters
- Example: Hard conflict weights
- Example: No student conflicts
- Example: Times are way more important than rooms
- Distance conflict settings (student speed, distances between non back-to-back classes, ...)
- Automatic distribution constraints
- . .
- Try experiment with various solver settings

Best Practices: Timetabling

Best practices: Making Changes

- Use the Interactive solver (from the Timetables page) to be able to break some hard constraints
- MPP penalization can tell the solver what changes are hard
- Do not use the solver when students are already being enrolled, use Class Assignment page instead

C

UniTime

Other Features

Other: Reporting

Custom Reports

TIME

- Written in HQL (Hibernate Query Languages)
- Can have parameters (current session, department, subject area, ...)
- Lines can be clickable
- Export to CSV
- Example reports are available in UniTime
- Requires knowledge of the UniTime data model

Point In Time Reports

New in UniTime 4.2

- Snapshot of current state of students and their registration, class limits, etc.
- Using the Data Exchange page
- Multiple snapshots can be imported
- Full set of reports (weekly class hours, room utilizations, etc.)
- Roll forward

See http://help.unitime.org/Course_Reports for more details.

Scripts

ITIME

- Using JSR 223: Scripting for the Java Platform
- JavaScript or Python, can call UniTime methods
 - For Python, put Jython Standalone JAR to Tomcat/libs
- Can have parameters (including a file)
- Can produce a file
- Convenient for additional administrative tasks, custom CSV imports and exports, etc.
- Some examples are available at https://goo.gl/ufqW1t
- Permission (users with the given permission can run the script)
- Requires knowledge of the UniTime code base

See http://help.unitime.org/Scripts for more details.

Other: What-If Scenarios

What-If Scenarios

- Use academic session export/import to copy a session to a test instance
- Test session status can be used for multiple copies of the same session
- XMLs exports/imports or Scripts can be used to quickly manipulate the data (there is a new XML for preferences in UniTime 4.2)
- Examples

IME

- Building or room should become unavailable
- Change in time patterns
- Going from semesters to trimesters
- ...

Conclusion

UniTime

UNITIME

- Comprehensive system
- A lot to configure, customize, or otherwise to do
- But the defaults work well

For more details, please see us at the conference

- UniTime: Best Practices (Sunday, I:30pm 4:30pm in Flower)
- Case Study: UniTime at Masaryk University (Monday, Showcase Reception)
- UniTime 4.2: Instructor Scheduling (Tuesday, 10:15am 11:00am in Flower)
- Course Timetabling Around the World (Tuesday, 2:30pm 3:15pm in Flower)
- Or visit <u>www.unitime.org</u>

An online demo is available at https://demo.unitime.org