
ITC2007 Solver Description:
A Hybrid ApproachA Hybrid Approach

PATAT 2008 Tomáš Müller

Objectives

� Use the Constraint Solver Library
� Open source (GNU LGPL)
� Local-search based framework
� Written in Java
� Used in our university timetabling system UniTime

� Course Timetabling, Examination Timetabling, Student Sectioning
� Applied in practice on a large university-wide problem (at Purdue University)

PATAT 2008 ITC2007 Solver Description 2

Applied in practice on a large university-wide problem (at Purdue University)
� Web based, open source (GNU GPL), also written in Java
� More information available at http://www.unitime.org

� Including download, documentation, demo, real-life benchmarks, …

� Apply the same algorithm for all three tracks
� With only minimal changes to reflect different problem formulations

� Problem model, neighborhoods

� Compare used techniques and achieved results with other competitors
� Further improve the constraint solver library

Constraint Solver Library

� Constraint model
� Variable, Value, Constraint, Model, Neighborhoods, etc.

� Abstract classes or interfaces
� E.g., a lecture can be modeled as a variable, time & room assignment as a value

� Including relations between these primitives
� Variable has a domain, constraint works with a set of variables, etc.

PATAT 2008 ITC2007 Solver Description 3

� Local-search based, however
� Operates over feasible, though not necessarily complete, solutions
� Feasibility is assured automatically

� Via notifications that are send between variables and their constraints
� Constraints can maintain information to ensure quick feasibility checks

� E.g., each room can have a table containing current assignments
f : time slot → a lecture or empty

Constraint Solver Library

� Default search algorithm and strategies
� Iterative forward search

� Guided by neighborhood selection, termination, and solution comparison
heuristics
while (termination.canContinue(solution)) {
Neighbour n = neighbourSelection.select(solution);
if (n!=null) n.assign(solution);
if (solutionComparator.isBetterThanBest(solution)) solution.saveBest();

PATAT 2008 ITC2007 Solver Description 4

� Conflict-based statistics
� If A=a is unassigned because of the B=c

� A counter CBS[A≠a,B=c] is incremented

� Conflicts are weighted by their past occurrences
� Minimal Perturbation Problem

� Original solution, modified problem
→ adopted solution should differ as little as possible

� Extendable

}

=×
=×
=×
=×

⇐≠

aD

aC

cB

aB

aA

120

2

4

3

Competition Tracks

� Track 1: Examination Timetabling
� Exams, students, periods, rooms

� Two or more exams can be in one room.
� No direct student conflicts, period lengths, room capacities
� Additional constraints (precedence, room exclusivity, same/different period)

� Penalizations for
� Two exams in a row or in a day, period spread (two exams closer than given

PATAT 2008 ITC2007 Solver Description 5

� Two exams in a row or in a day, period spread (two exams closer than given
number of periods)

� Room and period penalties, mixed durations, large exams in later periods

Competition Tracks

� Track 2: Post Enrollment Course Timetabling
� Events, students, time slots (5 days, each with 9 slots), rooms

� No direct student conflicts, room capacities & features
� Extension of International Timetabling Competition from 2003

� Added event availability, precedence constraints

� Penalizations for
� Last slot a day, more than two events consecutively, single event a day

PATAT 2008 ITC2007 Solver Description 6

� Last slot a day, more than two events consecutively, single event a day

Competition Tracks

� Track 3: Curriculum-based Course Timetabling
� Lectures, courses, curricula, periods, rooms, teachers

� Lectures organized into courses, availability, minimal number of days
� Courses grouped into curricula
� Lectures of the same curricula or teacher must be assigned in different periods

� Penalizations for
� Room capacity (room size < number of student in a course)

PATAT 2008 ITC2007 Solver Description 7

� Room capacity (room size < number of student in a course)
� Spread of lectures of a course into minimal number of days
� Curriculum compactness (a lecture not adjacent to another lecture of the same

curricula)
� Room stability (lectures of the same course in different rooms)

Constraint Solver Library Example

public class TimetablingModel extends Model {

public Vector<Variable> variables(); // set of events

public Vector<Constraint> constraints(); // rooms, students, precedences

// total score (sum of Student.score() over all students)
public int getTotalValue();

}
public class Event extends Variable {

public Set<Student> students();

public Set<Room> rooms();

public boolean isAvailable(int slot);

public Set<Placement> values() {

PATAT 2008 ITC2007 Solver Description 8

public Set<Placement> values() {

Set values<Placement> = new Set();

for (int time=0;time<45;time++) {

if (!isAvailable(time)) continue;

for (Room room : rooms())

values.addElement(new Placement(this, time, room));

}
return values;

}

}
public class Placement extends Value {

public Event variable();

public int time();

public Room room();

public int toInt(); //change in score if this assigned

}

Constraint Solver Library Example

public class Student extends Constraint {

private Placement[] iTable = new Placement[45];

public void assigned(long iteration, Placement value) {

super.assigned(iteration, value);

iTable[value.time()]=value;

}
public void unassigned(long iteration, Placement value) {

super.unassigned(iteration, value);

iTable[value.time()]=null;

}
public void computeConflicts(Placement value, Set conflicts) {

PATAT 2008 ITC2007 Solver Description 9

public void computeConflicts(Placement value, Set conflicts) {

if (iTable[value.time()]!=null) conflicts.add(iTable[value.time()]);

}
public int score() {

int score = 0;

for (int d=0;d<5;d++) { int inRow = 0, eventsADay = 0;

for (int t=0;t<9;t++) { int slot = d*9 + t;

if (iTable[slot]!=null) { inRow++; eventsADay++; if (t==8) score++; }

else inRow = 0;

if (inRow>2) score++;

}
if (eventsADay==1) score++;

}
return score;

}

}

Constraint Solver Library Example

public class Precedence extends BinaryConstraint {

public void computeConflicts(Placement value, Set conflicts) {

if (first().equals(value.variable())) {

Placement second = second().assignment();
if (second!=null && value.time()>=second.time()) conflicts.add(second);

} else {

Placement first = first().assignment();
if (first!=null && first.time()>=value.time()) conflicts.add(first);

}

}

}

PATAT 2008 ITC2007 Solver Description 10

}
public class Room extends Constraint {

private Placement[] iTable = new Placement[45];

public void assigned(long iteration, Placement value) {

super.assigned(iteration, value);

if (this.equals(value.room())) iTable[value.time()]=value;

}
public void unassigned(long iteration, Placement value) {

super.unassigned(iteration, value);

if (this.equals(value.room())) iTable[value.time()]=null;

}
public void computeConflicts(Placement value, Set conflicts) {

if (this.equals(value.room()) && iTable[value.time()]!=null)

conflicts.add(iTable[value.time()]);

}

}

Competition Solver

� 1. Construction phase
� Iterative forward search with conflict-based statistics
� Starts with all variables unassigned
� In each iteration:

� Select the “hardest” unassigned variable (domain size / # hard constraints)
� A best value is selected

� Change in objective function

PATAT 2008 ITC2007 Solver Description 11

� Change in objective function
� Hard conflicts weighted by conflict-based statistics

� Value is assigned, conflicting variables are unassigned

� Until a complete solution is found

Competition Solver

� 2. Hill climber
� In each iteration:

� Generate a move
� Random selection of one of given problem-specific neighborhoods
� Random generation of a neighbor move (E.g., moving a selected class into a

different room)
� Only not conflicting neighbors are considered

A move is accepted when it does not worsen the overall solution value

PATAT 2008 ITC2007 Solver Description 12

� A move is accepted when it does not worsen the overall solution value

� Until a given number of idle (not improving) iterations
Number of Idle Iterations HCidle = 25,000 (1); 50,000 (2&3)

Constraint Solver Library Example

public class HillClimber implements NeighbourSelection {

private Vector<NeighbourSelection> iNeighborhoods; //list of neighborhoods

private int iIdle = 0; //number of idle iterations

public Neighbour select(Solution solution) {

while (iIdle<25000) {

NeighbourSelection neighbour = ToolBox.random(iNeighborhoods);

Neighbour n = neighbour.select(solution);

iIdle++;

PATAT 2008 ITC2007 Solver Description 13

iIdle++;
if (n==null) continue;

if (n.value()<0.0) { iIdle = 0; return n; }

else if (n.value()==0) return n;

}
return null;

}

}

Competition Solver

� 3. Great Deluge
� Bound

� Initialized to B = GDub · Sbest

� In each iteration:
� Generate a move

� Same as in Hill Climber

� A move is accepted when the new solution value does not exceed the bound

Upper Bound GDub = 1.12 (1); 1.10 (2); 1.15 (3)

Cooling Rate GDcr = 0.99999988 (1); 0.9999998 (2); 0.99999986 (3)

PATAT 2008 ITC2007 Solver Description 14

� A move is accepted when the new solution value does not exceed the bound
� Bound is decreased after every iteration B = B · GDcr

� Repeated until bound reaches lower limit GDlb
at
· Sbest

� Reheat: B = GDub
at
· Sbest

� Where at is the number of reheats without best found solution being improved

Lower Bound GDlb = 0.9

Competition Solver

� 4. Simulated Annealing
� Temperature
� In each iteration:

� Generate a move
� Same as in Hill Climber

� A move is accepted if it is not worsening or with probability e -∆ / T

� After each SAcc · TL iterations,

Initial Temperature SAit = 1.5 (2); 2.5 (3)

Cooling CoeficientSAcc = 5 (2); 7 (3)

Cooling Rate SA = 0.97 (2); 0.82 (3)

Temperature Length TL ~ sum of domain sizes

PATAT 2008 ITC2007 Solver Description 15

� After each SAcc · TL iterations,
temperature decreased by a cooling rate
T = T · SAcr

� Repeated until SArc · SAcc · TL of idle (not improving) iterations is reached
� Temperature reheated T = T · SAcr

-1.7 ·SArc

Cooling Rate SAcr = 0.97 (2); 0.82 (3)

Reheat CoeficientSArc = 7 (2); 7 (3)

Neighborhoods

� Track 1: Examination Timetabling
� Exam Swap

� select exam, new period and room, assign or swap with conflicting exam
� try following periods and rooms if two or more conflicts or unable to swap

� Period Change, Room Change, Period and Room Change
� select exam, new period/room, assign when no conflict
� otherwise try following periods/rooms

PATAT 2008 ITC2007 Solver Description 16

� otherwise try following periods/rooms

� Period Swap, Room Swap
� select exam, new period/room, if one conflicting exam swap exams
� otherwise try following periods/rooms

� Comments
� Simulated annealing step not used (after great deluge phase, it gets back to

great deluge phase, but with new bound)

Neighborhoods

� Track 2: Post Enrollment Course Timetabling
� Time Move, Room Move

� select event, new time slot/room, assign when no conflict

� Event Move
� select event, new time slot and room, assign when no conflict try to swap when

one conflict

� Event Swap

PATAT 2008 ITC2007 Solver Description 17

� Event Swap
� select two events, try to swap times (can pick different rooms)

� Precedence Swap
� select violated precedence constraint, try to reassign one event (select different

time slot and room) so that the constraint is satisfied

� Comments
� Soft constraints are ignored during construction phase
� It is allowed to assign an event into a time with no room or to violate

precedence constraint Violations weighted by one at the beginning,
increased by one every 1,000 iterations

Selected less often than the others

Neighborhoods

� Track 3: Curriculum-based Course Timetabling
� Time Move, Room Move

� select lecture, new time slot/room, assign when no conflict

� Lecture Move
� select lecture, new time slot and room, assign when no conflict try to swap

when one conflict

� Room Stability Move

PATAT 2008 ITC2007 Solver Description 18

� Room Stability Move
� select course, room, try assign all lectures in the rooms, may swap lectures

between rooms

� Min Working Days Move
� select course, select a day with two or more lectures, try to move a lecture to

another (unused) day

� Curriculum Compactness Move
� select course and not adjacent lecture, try move lecture to some adjacent time

Selected less often than the others

Constraint Solver Library Example

public class RoomMove implements NeighbourSelection{

public Neighbour select(Solution solution) {

// select an event at random

Event event = ToolBox.random(solution.model().variables());

// keep time
int time = event.assignment().time();

// select a room at random (from the rooms where the event can take place)
int rx = ToolBox.random(event.rooms().size());

// iterate rooms starting from rx, look for the first available one

PATAT 2008 ITC2007 Solver Description 19

// iterate rooms starting from rx, look for the first available one
for (int r=0;r<event.rooms().size();r++) {

Room room = event.rooms().get((r+rx)%event.rooms().size());

// skip currently assigned room
if (room.equals(event.assignment().room())) continue;

Placement placement = new Placement(event,time,room);

if (solution.model().computeConflicts(placement).isEmpty())

return new SimpleNeighbour(event,placement); //reassignment of event

}
return null; // no room available

}

}

Results of Track 1: Examination Timetabling

Instance Number 1 2 3 4 5 6 7 8

Two Exams in a Row 42 0 1275 7533 40 3700 0 0

Two Exams in a Day 0 10 2070 3245 0 0 0 0

Period Spread 2534 0 5193 3958 1361 19900 3628 6718

Mixed Durations 100 0 0 0 0 75 0 0

Larger Exams Constraints 260 380 840 105 1440 375 460 380

Room Penalty 1150 0 0 0 0 1250 0 125

Submitted results (best solution of 100 runs)

PATAT 2008 ITC2007 Solver Description 20

Room Penalty 1150 0 0 0 0 1250 0 125

Period Penalty 270 0 190 1750 100 475 0 342

Overall Value 4356 390 9568 16591 2941 25775 4088 7565

Instance Number 1 2 3 4 5 6 7 8 9 10 11 12 rank

T. Müller 4370 400 10049 18141 2988 26585 4213 7742 1030 16682 34129 5535 13.3

C. Gogos 5905 1008 13771 18674 4139 27640 6572 10521 1159 - 43888 - 23.4

M. Atsuta et al. 8006 3470 17669 22559 4638 29155 10473 14317 1737 15085 - 5264 28.4

G. Smet 6670 623 - - 3847 27815 5420 - 1288 14778 - - 28.6

N. Pillay 12035 2886 15917 23582 6860 32250 17666 15592 2055 17724 40535 6310 33.8

Final ordering (best solutions run by organizers)

Results of Track 2: Post Enrollment Course Timetbl.

Instance Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Distance to Feasibility 0 0 0 0 0 0 0 0 0 57 0 0 0 0 0 0

More than Two in a Row 728 1093 73 111 0 8 2 0 881 1268 118 169 70 2 0 2

One Class on a Day 23 21 132 283 0 0 3 0 16 33 177 233 1 0 0 4

Last Time Slot of a Day 579 1040 0 0 0 5 0 0 998 1139 52 51 3 0 0 0

Overall Value 1330 2154 205 394 0 13 5 0 1895 2440 347 453 74 2 0 6

Submitted results (best solution of 100 runs)

PATAT 2008 ITC2007 Solver Description 21

Overall Value 1330 2154 205 394 0 13 5 0 1895 2440 347 453 74 2 0 6

Instance Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 rank

H. Cambazard et al. 571 993 164 310 5 0 6 0 1560 2163 178 146 0 1 0 2 0 0 1824 445 0 29 238 21 13.9

M. Atsuta et al. 61 547 382 529 5 0 0 0 0 0 548 869 0 0 379 191 1 0 - 1215 0 0 430 720 24.4

M. Chiarandini et al. 1482 1635 288 385 559 851 10 0 1947 1741 240 475 675 864 0 1 5 3 1868 596 602 1364 688 822 28.3

C. Nothegger et al. 15 0 391 239 34 87 0 4 0 0 547 32 166 0 0 41 68 26 22 - 33 0 - 30 29.5

T. Müller 1861 - 272 425 8 28 13 6 - - 263 804 285 110 5 132 72 70 - 878 40 889 436 372 31.3

Final ordering (best solutions run by organizers)

Results of Track 3: Curriculum Course Timetabling

Instance Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Room Capacity 4 0 0 0 0 0 0 0 0 0 0 0 0 0

Minimum Working Days 0 15 10 5 180 15 0 5 35 5 0 255 10 5

Curriculum Compactness 0 28 62 30 114 26 14 34 68 4 0 76 56 48

Room Stability 1 0 0 0 4 0 0 0 0 0 0 0 0 0

Overall Value 5 43 72 35 298 41 14 39 103 9 0 331 66 53

Submitted results (best solution of 100 runs)

PATAT 2008 ITC2007 Solver Description 22

Instance Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 rank

T. Müller 5 51 84 37 330 48 20 41 109 16 0 333 66 59 84 34 83 83 62 27 103 12.9

Z. Lu et al. 5 55 71 43 309 53 28 49 105 21 0 343 73 57 71 39 91 69 65 47 106 16.7

M. Atsuta et al. 5 50 82 35 312 69 42 40 110 27 0 351 68 59 82 40 102 68 75 61 123 17.6

M Geiger 5 111 128 72 410 100 57 77 150 71 0 442 622 90 128 81 124 116 107 88 174 38.2

M. Clark et al. 10 111 119 72 426 130 110 83 139 85 3 408 113 84 119 84 152 110 111 144 169 42.2

Final ordering (best solutions run by organizers)

Conclusions

� Success!
� Winner of two tracks, finalist of all three
� With a single (hybrid) approach

� Further work
� More in depth comparison with competition solvers
� Improvement of the existing solver for university timetabling application

PATAT 2008 ITC2007 Solver Description 23

Improvement of the existing solver for university timetabling application

� Applications
� Examination timetabling at Purdue and Widener Universities

� Different model, same solver
� E.g., an exam can be split into multiple rooms if needed,

direct student conflicts are allowed (but minimized)

� Additional Information (including source code)
� http://www.unitime.org/itc2007

