

Real-life Curriculum-based Timetabling PATAT 2012

Thursday, August 30, 2012

Tomáš Müller, Hana Rudová

- Curriculum model
 - Electives and optional courses
 - Courses with multiple alternative sections
- Curriculum to enrollment transformation
 - Motivation
 - Modeling
 - Algorithm
- Experiments
 - Real application at Faculty of Education, Masaryk University
 - Transformation
 - Timetabling
- Conclusion
 - Possible extensions to the proposed model

• Typical Curriculum Model

- List of curricula, each curriculum has a list of classes
- Classes of the same curriculum cannot overlap in time
- And the usual... (classes, instructors, rooms, other constraints)

Common Issues

- Elective and optional courses
- Alternatives in the course structure
- Courses can be shared between multiple curricula

- Typical Curriculum Model
 - List of curricula, each curriculum has a list of classes
 - Classes of the same curriculum cannot overlap in time
 - And the usual... (classes, instructors, rooms, other constraints)
- Common Issues
 - Elective and optional courses
 - Alternatives in the course structure
 - Courses can be shared between multiple curricula

Room I	
Room 2	B
Room 3	E
Room 4	F

Electives: students only need to take one of the given N courses

Conflicts between optional courses could be minimized (instead of prohibited)

- Typical Curriculum Model
 - List of curricula, each curriculum has a list of classes
 - Classes of the same curriculum cannot overlap in time
 - And the usual... (classes, instructors, rooms, other constraints)
- Common Issues
 - Elective and optional courses
 - Alternatives in the course structure
 - Courses can be shared between multiple curricula

Room I	A					
Room 2		В	E		F	
Room 3			Α			A2°
Room 4				В		B 2 [•]

A course may have a lecture and multiple seminars

Typical Curriculum Model

- List of curricula, each curriculum has a list of classes
- Classes of the same curriculum cannot overlap in time
- And the usual... (classes, instructors, rooms, other constraints)

Common Issues

- Elective and optional courses
- Alternatives in the course structure
- Courses can be shared between multiple curricula

Room I	A		E		
Room 2		B	F		
Room 3			Α	1	A 2
Room 4				В	B 2

Proposed Curriculum Model

• For each curriculum

• There is a number of students,

and a list of courses with their course projections

course projection: number of students that are expected to attend the course

• Courses can be grouped together

Conflicting group: same students

Non conflicting group: different students

Course Projections

Group	Course		01
Required	ALG 101	ρ	100.0%
Required	CALC 101	P	100.0%
Elective	ENGL 101	ρ	60.0%
Elective	SPAN 101	ρ	40.0%
	BIOL 101	ρ	10.0%
	CHM 101	ρ	20.0%

Course Projections 01 Group Course P M1 and M2 M or N or O M1 50.0% P M1 and M2 M2 50.0% P N1 and N2 M or N or O N1 30.0% P N1 and N2 N2 30.0% P O1 and O2 M or N or O 01 20.0% 2 O1 and O2 02 20.0% P

Proposed Curriculum Model

- Target Share
 - For each pair of courses of a curriculum
 - Percentage of students that are expected to attend both courses

$$t_{c,d} = \begin{cases} 1 & \text{if courses } c, d \text{ are in a conflicting group} \\ 0 & \text{if courses } c, d \text{ are in a non conflicting group} \\ e_c e_d & \text{otherwise (} e_c \text{ is a course projection of } c \text{)} \end{cases}$$

Course Projections

Group	Course		01
Required	ALG 101	P	100.0%
Required	CALC 101	P	100.0%
Elective	ENGL 101	P	60.0%
Elective	SPAN 101	P	40.0%
	BIOL 101	P	10.0%
	CHM 101	P	20.0%

Course Projections

Group	Course		01
(M1 and M2) (M or N or O	M1	P	50.0%
M1 and M2	M2	P	50.0%
N1 and N2 M or N or O	N1	P	30.0%
N1 and N2	N2	P	30.0%
O1 and O2 MorNorO	01	P	20.0%
O1 and O2	02	P	20.0%
		٩	

Solution Approach

- UniTime
 - Comprehensive course timetabling system
 - Post-enrollment based
 - Can deal with alternatives in the course structure

Courses	
ALG 101	2
COM 101	P
PSY 101	P UniTin
ECON 101	2
GER 101	2
Student reque	ests courses

Class	ses										
Subject	Course	Туре	CRN	Days	Start	End	Date		Room		Instructor
ALG	101	Lec	1	MWF	9:30a	10:20a	08/23 -	12/10	EDUC 10	3	J. Doe
COM	101	Lec	2	TR	4:30p	5:45p	08/24 -	12/09	EDUC 10	2	
PSY	101	Lec	1	MWF	1:30p	2:20p	08/23 -	12/10	EDUC 10	1	
ECON	101	Lec	1	MWF	11:30a	12:20p	08/23 -	12/10	EDUC 10	1	
GER	101	Lec	2	MWF	12:30p	1:20p	08/23 -	12/10	EDUC 10	2	
		Lab	3	Т	10:30a	11:20a	08/24 -	12/07	EDUC 10	8	

UniTime assigns classes

Extending UniTime

- I. Defining curriculum model
- 2. Transformation of curriculum model to post-enrollment
- 3. Applying UniTime with post-enrollment model

Solution Approach

- Transformation of curriculum model to post-enrollment
 - Student course requests are generated for each curriculum
 - Respecting course projections and target shares

Course	Projections			
Group	Course	01		Courses
Compulsory	ALG 101	₽ 100.0%	N	ALG 101
Compulsory	COM 101	₽ 100.0%	Transformertien	COM 101
Compulsory	PSY 101	₽ 100.0%	Transformation	PSY 101
Elective	ECON 101	₽ 60.0%		ECON 101
Elective	HIST 101	A0.0%		GER 101
	GER 101	P 30.0%	190	One for each student of a cur
	SPAN 101	₽ 30.0%		

Reason for the transformation

- There is no direct mapping between curricula and classes
- Some curriculum to class assignment must be made
 - Curriculum ~ list of (pairs of) classes that cannot overlap in time
- A curriculum may get split based on the electives, optionals, and class sizes

Curriculum To Enrollment

- Input (for each curriculum)
 - \circ Number of students in the curriculum x and the course projections e_c
 - \circ Target share between pairs of courses $t_{c,d}$
- Output
 - \circ Student course requests for the given number of students x

Objectives

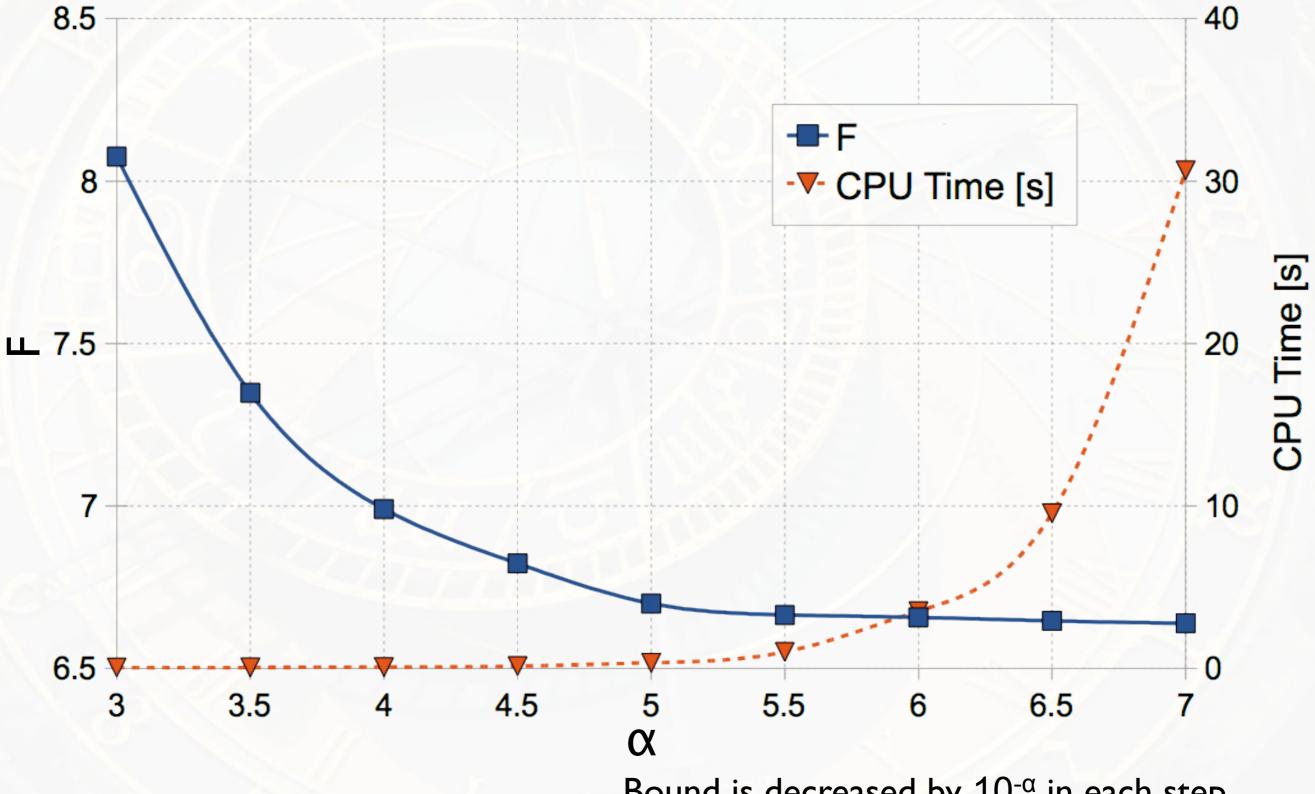
- \circ Assign students to courses so that each course has the desired number of students xe_c
- Minimize the total difference between
 - target share $t_{c,d}x$
 - and the actual share $S_{c,d}$
 - between any pair of courses c, d

$$F(\theta) = \sum_{c,d \in \mathcal{C}, c \neq d} |t_{c,d} x - s_{c,d}|$$

Curriculum To Enrollment

Construction Phase

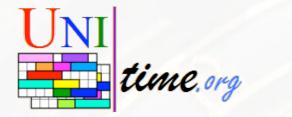
- Iterative, while there is a course with less students than expected
 - I. Pick a course with the highest number of unassigned requests
 - 2. Pick a student with the smallest impact on the objective function
 - 3. Assign student to the course


Great Deluge Phase

 \circ Initial bound B = 1.25 × F

Student swap: One student is unassigned from the course, one student is assigned to the course.

- \circ Iterative, while lower bound $0.75 \times F$ or F = 0 is not reached
 - I. Pick a course randomly
 - 2. Choose a random student swap
 - 3. Accept if improving or if F does not exceeds the bound
 - 4. Decrease the bound $F = 10^{-\alpha} \times F$



Bound is decreased by $10^{-\alpha}$ in each step

Application at Masaryk University

Fall 2011	All together	Present (P)	Combined (K)	Lifelong (C)
Spring 2012				
Curricula	574	470	56	56
	543	442	53	48
Students	7,569	4,301	2,562	706
	6,803	3,852	2,362	589
Students	13.19	9.15	45.75	14.71
per classif.	12.53	8.71	44.57	12.27
Courses	30.61	34.63	18.32	5.67
per classif.	27.44	31.06	15.62	7.21
F	7.05 ± 0.01	8.24 ± 0.01	3.14 ± 0.03	0.00 ± 0.00
	6.66 ± 0.01	8.04 ± 0.01	1.02 ± 0.03	0.13 ± 0.00
F after 1. phase	11.97 ± 0.13	13.25 ± 0.13	11.53 ± 0.14	0.04 ± 0.06
	10.87 ± 0.11	11.99 ± 0.12	11.03 ± 0.12	0.31 ± 0.06
CPU time [s]	3.36 ± 0.06	3.08 ± 0.05	8.58 ± 0.12	0.01 ± 0.00
	3.53 ± 0.07	2.88 ± 0.06	12.14 ± 0.16	0.02 ± 0.03

time.org

Application at Masaryk University

1 1157 7	Fall 2011	Fall 2011	Spring 2012	Spring 2012		
Land Harris /	automated	published	automated	published		
Courses (comp. & elect.)	1,225	(1,156)	900 (8	900 (870)		
Classes (comp. & elect.)	1,831	(1,575)	1,665 (1,408)			
Enrollments (comp. & elect.)	57,861	(52, 396)	45,786 (4	45,400)	Input data	
Student conflicts	418~(0.63%)	456~(0.69%)	477~(1.02%)	417~(0.89%)	teria	
among comp. & elect.	112~(0.17%)	140~(0.21%)	96~(0.20%)	93~(0.20%)	optimization criteria	
Time preferences	89.27%	89.93%	94.88%	95.32%	nizatio	
Room preferences	78.03%	79.92%	85.15%	86.50%	optir	
Distribution preferences	84.50%	80.41%	90.49%	90.49%	Base	
Interactive changes		355		275	ons	
of time		183		105	Modifications	
of room		300		218	Mo	

Conclusion

- New approach to curriculum timetabling
 - Offers a general way how a curriculum timetabling can be solved using a post-enrollment solver
- Future work
 - Students that require multiple curricula
 - Example: multiple specializations, or a common part + specialization
 - Natural extension of the presented model
 - Combining historic data to estimate target shares
 - Further study in comparing this approach with the traditional one
- For more details
 - See our paper
 - Visit http://www.unitime.org