PURDUE UNIVERSITY.

Purdue University Course Timetabling & Course Sectioning

Space Management & Academic Scheduling Purdue University

March 2, 2007

Agenda

- Motivation
 - Why we are doing what we are doing...
- A Little of Theory
 - Constraint Satisfaction Problem (CSP)
 - Course Timetabling / Student Sectioning Model
 - Constraint Solver
- Brief Overview of System Architecture
- Some Important Aspects of
 - Course Timetabling
 - Student Sectioning
- Application Demo
- Conclusion

Motivation

- Purdue University relies on efficiencies resulting from optimized scheduling
 - Cost of offering classes
 - Limited classroom space
- Demand-driven Scheduling
 - Collect student demand for courses and times
 - Develop optimized timetable and student schedules
- Academic Scheduling functionality is <u>not</u> included in any ERP packages
- Timetabling and Scheduling are active research areas with very promising results

Motivation

- Purdue timetabling research began 6 years ago
 - Collaboration with Masaryk and Charles Universities
 - Extensive knowledge of scheduling and constraint-based optimization
 - Published work has been well-received by research communities
- Constraint Programming Techniques
 - Powerful tool for solving optimization problems
 - Problem is described in natural way (variables, values, constraints)
 - Many practical applications in planning, timetabling and scheduling

Constraint Satisfaction Problem (CSP)

- Problem $\Theta = (V, D, C)$
 - $V = \{v_1, v_2, \dots, v_n\}$ is a finite set of variables
 - $D = \{Dv_1, Dv_2, \dots, Dv_n\}$ is a set of domains
 - Domain is a finite set of values
 - $C = \{c_1, c_2, \dots, c_m\}$ is a set of constraints
 - A constraint limits the combination of values that can variables simultaneously take
 - Solution is an assignment of all variables $\eta: V \rightarrow D$
 - That satisfy all the constraints from C
- Optimization Problem $\Theta = (V, D, C, f)$
 - f is an objective function
 - That maps every partial feasible assignment to a number
 - Usually expressed by *soft* constraints

Course Timetabling Model

- Variables: Classes
- Domains: Time and room assignments
- Constraints: Non-overlap of time/room resources,

Course structure requirements,

Faculty time/room requirements,

Class distribution, Building distances, ...

- Objectives: Minimize student conflicts, Maximize time/room/distribution preferences
- Problem model and constraints consider complexity of all university courses

Student Sectioning Model

- Variables: Students
- Domains: Assignment of students to classes
- Constraints: Class limits,

Class conflicts (overlaps in time),

Reservations,

Course structure,

Enrollment projections, ...

Objectives: Maximize satisfaction of student course/free time requests, and other preferences

Constraint Solver

- Iterative Forward Search (IFS)
 - General constraint solver
 - It is working with variables, values, constraints, etc.
 - Hybrid algorithm
 - Mixture of Local Search and Systematic (backtracking-based) search
 - Gradually improves upon incomplete feasible assignments
 - Some variables can be unassigned, but no hard constraint is violated
 - Applicable to various problems and scenarios
 - Extensible
 - Search guiding (meta)-heuristics
 - Dynamic Arc Consistency
 - Conflict-based Statistics learning technique
 - Dynamic Backtracking

Application of IFS

- Initial Problem Approach
 - All data are given, a solution is computed
- Minimal Perturbation Problem Approach
 - Problem definition can vary in time
 - Environment changes (broken machines, delayed flights, ...)
 - New properties based on a solution found so far
 - Goal
 - Adopted solution should differ as little as possible from the previous/initial one
- Interactive Approach
 - Help user to construct a solution
 - What if ...

System Architecture

System Architecture

- University-wide problem size
 - 9 000 classes, 570 rooms
 - 39 000 students with 259 000 class requests
- Problem Decomposition
 - Central timetable for large lecture classes
 - Approximately 900 classes, 54 rooms
 - Utilization over 78% (~ 97% for four largest rooms)
 - **Timetables for individual departments**
 - 70 timetables with sizes from 10 to 1200 classes
 - Built on top of large lecture timetable
 - Departmental schedule managers are responsible for their own solutions
 - Central computer laboratory timetable

- For each class
 - Student requirements
 - Time requirements & preferences
 - Meeting patterns (e.g., 3 x 50 min, 2 x 75 min)
 - Room requirements & preferences
 - Capacity
 - Required equipment
 - Room / building preference
 - Building distances
 - Instructor
 - Additional (distribution) constraints
 - Between several classes (e.g. back-to-back, precedence)
 - Other
 - Departmental balancing, efficient utilization of time and rooms, ...

Each student states which courses he

or she wants to attend

(soft constraint)

- For each class
 - Student requirements
 - Time requirements & preferences
 - Meeting patterns (e.g., 3 x 50 min, 2 x 75 min)
 - Room requirements & preferences
 - Capacity
 - **Required equipment**
 - Room / building preference
 - **Building distances**
 - Instructor
 - Additional (distribution) constraints
 - Between several classes (e.g. back-to-back, precedence)
 - Other
 - Departmental balancing, efficient utilization of time and rooms, ...

Time Preferences

9:30

to:

MW

TTh

WF

from: 7:30 8:30 9:30 10:30 11:30 12:30 1:30 2:30 3:30 4:30 10:30 11:30 12:30 1:30

2:30

3:30

4:30 5:30

Required Strongly Preferred

Preferred

Neutral

Discouraged Strongly

Discouraged

Prohibited

- For each class
 - Student requirements
 - Time requirements & preferences
 - Meeting patterns (e.g., 3 x 50 min, 2 x 75 min)
 - Room requirements & preferences
 - Capacity
 - Required equipment
 - Room / building preference
 - Building distances
 - Instructor
 - Additional (distribution) constraints
 - Between several classes (e.g. back-to-back, precedence)
 - Other
 - Departmental balancing, efficient utilization of time and rooms, ...

Required Strongly Preferred Preferred Neutral Discouraged Strongly Discouraged Prohibited

Interaction between problems

- Only committed solutions are visible and considered by other problems
 - Consistency is ensured between committed solutions
 - Room sharing
 - At any time, a room is either unavailable, available for use on a first come (commit) first served bases, or allocated to a particular department
 - Mutual constraints (e.g., student enrollments) are considered only between the current problem and solutions to committed problems
- If there are many relations between two (or more) departments
 - E.g., many students are taking classes from both departments
 - These departments can be solved together
 - A timetable containing all classes of these departments is created
 - Or agree on a solution order
 - E.g., the more difficult problem can be solved and committed, the second timetable is built on top of the first.

Data Management (instructional offering structure)

- Classes are organized in a visual representation of the course structure
 - GUI allows intuitive entry and display of class and constraint data
 - Preferences and requirements can be set at multiple levels
 - Some constraints are automatically deduced from the structure

				Prefere	nces		
Demand	Mins Per Week	Limit	Time Pattern	Time	Room	Distribution	Instructor
62		40					
	50	40	1 x 50		Classroom		
/	150	40	<mark>3 x 5</mark> 0		ENAD Dell 2.8 machines	втв	
	50	40	1 x 50		Classroom		S. Bell
	150	20	3 x 50		ENAD Dell 2.8 machines	втв	J. Beckley
	150	20	3 x 50		ENAD Dell 2.8 machines	втв	J. Beckley
	-	62 50 (150 50 150	62 40 50 40 7 150 40 50 40 50 40 150 20	62 40 50 40 1 x 50 150 40 3 x 50 50 40 1 x 50 50 40 1 x 50 150 20 3 x 50	DemandMins Per WeekLimitTime PatternTime 62 40 1×50 1×50 1×50 1×50 7 150 40 3×50 1×50 1×50 150 20 3×50 1×50 1×50	62 40 50 40 1 x 50 150 40 3 x 50 50 40 3 x 50 50 40 1 x 50 50 40 1 x 50 150 20 3 x 50	DemandMins Per WeekLimitTime PatternTimeRoomDistribution62401 × 5050401 × 50Classroom

Purdue University Course Timetabling & Student Sectioning

Course Structure Model

Course Structure Model

Purdue University Course Timetabling & Student Sectioning

Competitive Behavior (fairness of the solution)

- Preferred times and rooms
 - Minimization of the overall cost (objective function) typically favors those who provide the most preferences

Normalization of time preferences

 Increasing the number of preferences lowers individual preference weights

	7:30a 8:20a	8:30a 9:20a		10:30a 11:20a					3:30p 4:20p	4:30p 5:20p			
MWF		0	0	-40	0	0	0	0	0	0			
	7:30a 8:20a	8:30a 9:20a		10:30a 11:20a				2:30p 3:20p	3:30p 4:20p	4:30p 5:20p			
MWF	0	-5	-5	-20	-5	0	0	0	0	0			
	7:30a 8:20a			10:30a 11:20a					3:30p 4:20p	4:30p 5:20p			

- Departmental balancing constraint
 - Classes from a department are evenly spread across available times

- Data Consistency Checking
 - Ability to find a solution
 - Input data often contain inconsistencies preventing a complete solution from being found
 - Therefore, the first stage of the timetabling process is to verify data and identify the weaknesses
 - Providing feedback to the user
 - Solver must be able to provide information in an easily readable form

	□ 15851× C S 110 Lec 1
	6384× MW 1:30p - 2:20p Full Term EE 129 KING, ERIC J
	6318× Instructor KING, ERIC J
	□ 5771× C S 110 Lec 2 ← MW 1:30p - 2:20p Full Term EE 129 KING, ERIC J
	3541× MW 12:30p - 1:20p Full Term LILY 1105 KING, ERIC J
Conflict-based statistics	3019× Instructor KING, ERIC J
Commet oused statistics	⊇ 2931× C S 110 Lec 2 ← MW 12:30p - 1:20p Full Term LILY 1105 KING, ERIC J
identify problem areas	3467× MW 12:30p - 1:20p Full Term EE 129 KING, ERIC J
identify problem areas	3408× Instructor KING, ERIC J
	2932× C S 110 Lec 2
	2459× MW 1:30p - 2:20p Full Term LILY 1105 KING, ERIC J
	1268× Room LILY 1105
	I265× BIOL 221 Lec 1 ← MWF 1:30p - 2:20p Full Term LILY 1105 SANDERS, DAVID
	1191× Instructor KING, ERIC J
	☐ 1191× C S 110 Lec 2 ← MW 1:30p - 2:20p Full Term LILY 1105 KING, ERIC J
	□ 338× AGEC 217 Lec 3

- Interactive Changes (ability to alter a solution)
 - Solutions can be manipulated manually or by fully automated solver
 - Ability to incorporate changes into an existing solution is critical in real-life problems
 - 1) Minimal Perturbation Problem
 - Solution to a modified problem is as close as possible to the initial solution
 - 2) Interactive Mode
 - Solver is guided by the user, providing an evaluated list of choices
 - Backtracking with limited depth is used

Score	Class	Date	Time	Room
0	PHIL 330 Lec 1	08/21-12/17	MWF 4:30p	CL50 224 \rightarrow WTHR 200
	PSY 120 Lec 4	08/21-12/17	MWF 4:30p	WTHR 200 → CL50 224
+0.8	PHIL 330 Lec 1	08/21-12/17	MWF 4:30p	CL50 224 → EE 129
	AGEC 217 Lec 2	08/21-12/17	MWF 4:30p	EE 129 → CL50 224
+5.75	PHIL 330 Lec 1	08/21-12/17	MWF 4:30p	CL50 224 → LILY 1105

Purdue University Student Sectioning

- Student Course Requests (existing students)
 - Before a timetable is made
 - Requested courses, free times, priorities, alternatives, wait-list?, ...
- Course Timetabling (*existing students*)
 - Student conflicts are considered
 - Last-like term enrollments + course requests from existing students
- Batch Sectioning

.

- Sectioning of pre-registered students
- Real-Time Sectioning (existing students + incoming freshmen)
 - Incomming students, changes of already sectioned/enrolled students
 - Changes in course timetable
 - Processing of wait-lists

Wk -1	Wk 1	Wk 2	Wk 3	Wk 4	Wk 5	Wk 6	Wk 7	Wk 8	Wk 9	Sp B	Wk 10	Wk 11	Wk 12	Wk 13	Wk 14	Wk 15	Wk 16
	Cur Space Req LLR Requests LLR S				LLR Sc	hedule	Dept/L	ab Scheo	lules								
	List Offerings Student Preliminary Schedule Requests							Со	ntinued	Request	S	R	eal-Time	e Schedu	iling		

Purdue University Course Timetabling & Student Sectioning

- Reservation of space for expected (incoming) students
 - Based on last-like term enrollments
 - In each section, a given number of spaces is reserved for new students
 - These reservations are updated as the students are enrolled into classes
 - To avoid student conflicts by individual class time choices
 - E.g., students A and B each require courses 1 and 2, section a of each course meets at the same time

March 2, 2007

ods Class Time Periods Purdue University Course Timetabling & Student Sectioning

Students still need to have some choice (course requests)

- Course priorities
- Free time requests
- Alternative course requests
- Wait-lists

Primary Course Requests

Add Request

	Type	Cou	irse)/Fr	ree Tin	ne		Waitlist	1st Alte	erna	tive Course	2nd Alternative Course			
1.	Free Time 💌	3 x	50	V	MWF	×	7:30a - 8:20a 🛛 💌							Ļ	Ì
2.	Course	EN	GL	۷	106R	*			ENGL	۷	108R 💌		1	Ļ	Ì
3.	Course	BIC)L	۲	110	*				¥		~ ~	1	Ļ	Ì
4.	Course 💌	MA		*	153	۷			MA	~	159 💌		1		Ì
Al	ternative Co	ourse	R	equ	ests							Add Alternati	ve R	equ	est
A1.	Course 💌	LA	ΤN	~	101	~				*	~		1		Ì

Students still need to have some choice (online sectioning)

Solution

- 1. Free Time MWF 7:30a 8:20a Full Term 2. ENGL 106R
 - E Lecture T 9:30a 10:20a Full Term HEAV 108
 - Sel Que Time Instructor Requires
 - 🔲 M 8:30a 9:20a
 - M 9:30a 10:20a
 - M 10:30a 11:20a
 - M 3:30p 4:20p
 - T 8:30a 9:20a
 - 💿 🔲 T 9:30a 10:20a
 - 🔲 T 11:30a 12:20p
 - T 1:30p 2:20p
 - 🔲 Т 3:30р 4:20р
 - Lecture F 9:30a 10:20a Full Term HEAV 108

Queue me for W 10:30a - 11:20a (requires Lecture M 10:30a - 11:20a)

E Lecture Th 9:30a - 10:20a Full Term WTHR 214

Queue me for F 10:30a - 11:20a (requires Lecture W 10:30a - 11:20a)

■ Recitation M 9:30a - 10:20a Full Term HEAV 225

Queue me for T 10:30a - 11:20a (requires Lecture F 10:30a - 11:20a) Queue me for Th 10:30a - 11:20a (requires Lecture F 10:30a - 11:20a)

- Choice between available sections
- Wait-listing for sections that are not available
- (Limited) ability to choose time and instructor

Reservations

- Academic area / major / minor reservations
- Group reservations (learning-communities)
- Individual reservations

Can be set on a course or on a particular class (or set of classes)

A&AE 203 - Aeromechanics I (105)

Academic Area	Туре	Reserved	Requested	Projected	Last Term
Aeronautics and Astronautics		67	67	67	65
Electrical & Cmptr Engineering		3	3	3	3
First Yr Engineering		27	27	27	27
School of Liberal Arts		1	1	1	1
Science		2	2	2	2
		100	100	100	98

Demonstration

Conclusions

- Course Timetabling
 - System used for LLR problem from Spring 05 schedule
 - University-wide from Fall 07 schedule
- Student Sectioning
 - Planned for Fall 08 / Spring 09

- More Information
 - http://www.smas.purdue.edu/research