Purdue
 U N I V E R S I T Y

Purdue University
 Course Timetabling \& Course Sectioning

Space Management \& Academic Scheduling Purdue University

March 2, 2007

Agenda

- Motivation
- Why we are doing what we are doing...
- A Little of Theory
- Constraint Satisfaction Problem (CSP)
- Course Timetabling / Student Sectioning Model
- Constraint Solver
- Brief Overview of System Architecture
- Some Important Aspects of
- Course Timetabling
- Student Sectioning
- Application Demo
- Conclusion

Motivation

- Purdue University relies on efficiencies resulting from optimized scheduling
- Cost of offering classes
- Limited classroom space
- Demand-driven Scheduling
- Collect student demand for courses and times
- Develop optimized timetable and student schedules
- Academic Scheduling functionality is not included in any ERP packages
- Timetabling and Scheduling are active research areas with very promising results

Motivation

- Purdue timetabling research began 6 years ago
- Collaboration with Masaryk and Charles Universities
- Extensive knowledge of scheduling and constraint-based optimization
- Published work has been well-received by research communities
- Constraint Programming Techniques
- Powerful tool for solving optimization problems
- Problem is described in natural way (variables, values, constraints)
- Many practical applications in planning, timetabling and scheduling

Constraint Satisfaction Problem (CSP)

- Problem $\Theta=(\mathrm{V}, \mathrm{D}, \mathrm{C})$
- $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ is a finite set of variables
- $D=\left\{D v_{1}, D v_{2}, \ldots, D v_{n}\right\}$ is a set of domains
- Domain is a finite set of values
- $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ is a set of constraints
- A constraint limits the combination of values that can variables simultaneously take
- Solution is an assignment of all variables $\eta: V \rightarrow D$
- That satisfy all the constraints from C
- Optimization Problem $\Theta=(\mathrm{V}, \mathrm{D}, \mathrm{C}, f)$
- f is an objective function
- That maps every partial feasible assignment to a number
- Usually expressed by soft constraints

Course Timetabling Model

- Variables: Classes
- Domains: Time and room assignments
- Constraints: Non-overlap of time/room resources,

Course structure requirements,
Faculty time/room requirements, Class distribution, Building distances, ...

- Objectives: Minimize student conflicts,

Maximize time/room/distribution preferences

- Problem model and constraints consider complexity of all university courses

Student Sectioning Model

- Variables: Students
- Domains: Assignment of students to classes
- Constraints: Class limits,

Class conflicts (overlaps in time),
Reservations,
Course structure,
Enrollment projections, ...

- Objectives: Maximize satisfaction of student course/free time requests, and other preferences

Constraint Solver

- Iterative Forward Search (IFS)
- General constraint solver
- It is working with variables, values, constraints, etc.
- Hybrid algorithm
- Mixture of Local Search and Systematic (backtracking-based) search
- Gradually improves upon incomplete feasible assignments
- Some variables can be unassigned, but no hard constraint is violated
- Applicable to various problems and scenarios
- Extensible
- Search guiding (meta)-heuristics
- Dynamic Arc Consistency
- Conflict-based Statistics learning technique
- Dynamic Backtracking

Application of IFS

- Initial Problem Approach
- All data are given, a solution is computed
- Minimal Perturbation Problem Approach
- Problem definition can vary in time
- Environment changes (broken machines, delayed flights, ...)
- New properties based on a solution found so far
- Goal
- Adopted solution should differ as little as possible from the previous/initial one
- Interactive Approach
- Help user to construct a solution
- What if ...

System Architecture

System Architecture

Purdue University Course Timetabling

- University-wide problem size
- 9000 classes, 570 rooms
- 39000 students with 259000 class requests
- Problem Decomposition
- Central timetable for large lecture classes
- Approximately 900 classes, 54 rooms
- Utilization over 78\% (~ 97\% for four largest rooms)
- Timetables for individual departments
- 70 timetables with sizes from 10 to 1200 classes
- Built on top of large lecture timetable
- Departmental schedule managers are responsible for their own solutions
- Central computer laboratory timetable

Purdue University Course Timetabling

- For each class
- Time requirements \& preferences
- Meeting patterns (e.g., $3 \times 50 \mathrm{~min}, 2 \times 75 \mathrm{~min}$)
- Room requirements \& preferences
- Capacity
- Required equipment
- Room / building preference
- Building distances
- Instructor
- Additional (distribution) constraints
- Between several classes (e.g. back-to-back, precedence)
- Other
- Departmental balancing, efficient utilization of time and rooms, ...

Purdue University Course Timetabling

- For each class
- Student requirements
- Time requirements \& preferences
- Meeting patterns (e.g., $3 \times 50 \mathrm{~min}, 2 \times 75 \mathrm{~min}$)
- Room requirements \& preferences
- Capacity
- Required equipment
- Room / building preference
- Building distances
- Instructor

- Additional (distribution) constraints
- Between several classes (e.g. back-to-back, precedence)
- Other
- Departmental balancing, efficient utilization of time and rooms, ...

Purdue University Course Timetabling

- For each class
- Student requirements
- Time requirements \& preferences
- Meeting patterns (e.g., $3 \times 50 \mathrm{~min}, 2 \times 75 \mathrm{~min}$)
- Room requirements \& preferences
- Capacity
- Required equipment
- Room / building preference
- Building distances
- Instructor
- Additional (distribution) constraints

- Other
- Departmental balancing, efficient utilization of time and rooms, ...

Important Aspects of Course Timetabling

- Interaction between problems
- Only committed solutions are visible and considered by other problems
- Consistency is ensured between committed solutions
- Room sharing
- At any time, a room is either unavailable, available for use on a first come (commit) first served bases, or allocated to a particular department
- Mutual constraints (e.g., student enrollments) are considered only between the current problem and solutions to committed problems
- If there are many relations between two (or more) departments
- E.g., many students are taking classes from both departments
- These departments can be solved together
- A timetable containing all classes of these departments is created
- Or agree on a solution order
- E.g., the more difficult problem can be solved and committed, the second timetable is built on top of the first.

Important Aspects of Course Timetabling

- Data Management (instructional offering structure)
- Classes are organized in a visual representation of the course structure
- GUI allows intuitive entry and display of class and constraint data
- Preferences and requirements can be set at multiple levels
- Some constraints are automatically deduced from the structure
----Preferences----
Demand Mins Per Week Limit Time Pattern Time Room Distribution Instructor

Course Structure Model

$\begin{array}{\|l\|l\|l\|l\|l\|ccr:c} \hline \text { Offeral } \\ \hline \end{array}$	Instructional Offering A					
Configuration	Configuration I		Configuration 2			
Subpart	Type a	Type b	Type m		ype n	
Class	2	$i+1$	i j+1	k	k+1	

Course Structure Model

```
Instructional
```

Offering

Instructional Offering:Course A Course B

Configuration \quad Configuration I
Configuration 2 ...

Subpart Parent Child

Important Aspects of Course Timetabling

- Competitive Behavior (fairness of the solution)
- Preferred times and rooms
- Minimization of the overall cost (objective function) typically favors those who provide the most preferences
- Normalization of time preferences
- Increasing the number of preferneces lowers individual preference weights

- Departmental balancing constraint
- Classes from a department are evenly spread across available times

Important Aspects of Course Timetabling

- Data Consistency Checking
- Ability to find a solution
- Input data often contain inconsistencies preventing a complete solution from being found
- Therefore, the first stage of the timetabling process is to verify data and identify the weaknesses
- Providing feedback to the user
- Solver must be able to provide information in an easily readable form
- Conflict-based statistics identify problem areas

```
\square 6384× MW 1:30p - 2:20p Full Term EE 129 KING, ERIC J
```

\square 6384× MW 1:30p - 2:20p Full Term EE 129 KING, ERIC J
@ 6318x Instructor KING, ERIC J
@ 6318x Instructor KING, ERIC J
5771\times C S 110 Lec 2 \& MW 1:30p - 2:20p Full Term EE 129 KING, ERIC J
5771\times C S 110 Lec 2 \& MW 1:30p - 2:20p Full Term EE 129 KING, ERIC J
\square 3541\times MW 12:30p - 1:20p Full Term LILY 1105 KING, ERIC J
\square 3541\times MW 12:30p - 1:20p Full Term LILY 1105 KING, ERIC J
@ 3019x Instructor KING, ERIC J
@ 3019x Instructor KING, ERIC J
\square 2931\times C S 110 Lec 2 ¢ MW 12:30p - 1:20p Full Term LILY 1105 KING, ERIC J
\square 2931\times C S 110 Lec 2 ¢ MW 12:30p - 1:20p Full Term LILY 1105 KING, ERIC J
\square3467\times MW 12:30p - 1:20p Full Term EE 129 KING, ERIC J
\square3467\times MW 12:30p - 1:20p Full Term EE 129 KING, ERIC J
@ 3408x Instructor KING, ERIC J
@ 3408x Instructor KING, ERIC J
\square 2 9 3 2 x ~ C S ~ 1 1 0 ~ L e c ~ 2 ~ \leftarrow M W ~ 1 2 : 3 0 p ~ - ~ 1 : 2 0 p ~ F u l l ~ T e r m ~ E E ~ 1 2 9 ~ K I N G , ~ E R I C ~ J ~
\square 2 9 3 2 x ~ C S ~ 1 1 0 ~ L e c ~ 2 ~ \leftarrow M W ~ 1 2 : 3 0 p ~ - ~ 1 : 2 0 p ~ F u l l ~ T e r m ~ E E ~ 1 2 9 ~ K I N G , ~ E R I C ~ J ~
\square 2459\times MW 1:30p - 2:20p Full Term LILY 1105 KING, ERIC J
\square 2459\times MW 1:30p - 2:20p Full Term LILY 1105 KING, ERIC J
\square 1268x Room LILY 1105
\square 1268x Room LILY 1105
\square1265x BIOL 221 Lec 1 \& MWF 1:30p - 2:20p Full Term LILY 1105 SANDERS, DAVID
\square1265x BIOL 221 Lec 1 \& MWF 1:30p - 2:20p Full Term LILY 1105 SANDERS, DAVID
\square1191\times Instructor KING, ERIC J
\square1191\times Instructor KING, ERIC J
\square1191\times C S 110 Lec 2 ヶMW 1:30p - 2:20p Full Term LILY 1105 KING, ERIC J
\square1191\times C S 110 Lec 2 ヶMW 1:30p - 2:20p Full Term LILY 1105 KING, ERIC J

15840\times C S 110 Lec 2

15840\times C S 110 Lec 2

\square 2588\times BIOL 221 Lec 1
\square 2588\times BIOL 221 Lec 1
338x AGEC 217 Lec 3

```
338x AGEC 217 Lec 3
```


Important Aspects of Course Timetabling

- Interactive Changes (ability to alter a solution)
- Solutions can be manipulated manually or by fully automated solver
- Ability to incorporate changes into an existing solution is critical in real-life problems
- 1) Minimal Perturbation Problem
- Solution to a modified problem is as close as possible to the initial solution
- 2) Interactive Mode
- Solver is guided by the user, providing an evaluated list of choices
- Backtracking with limited depth is used

Score Class	Date	Time	Room	
0	PHIL 330 Lec 1	$08 / 21-12 / 17$	MWF 4:30p	CL50 224 \rightarrow WTHR 200
	PSY 120 Lec 4	$08 / 21-12 / 17$	MWF 4:30p	WTHR 200 \rightarrow CL50 224
+0.8	PHIL 330 Lec 1	$08 / 21-12 / 17$	MWF 4:30p	CL50 224 \rightarrow EE 129
	AGEC 217 Lec 2	$08 / 21-12 / 17$	MWF 4:30p	EE 129 \rightarrow CL50 224
+5.75	PHIL 330 Lec 1	$08 / 21-12 / 17$	MWF 4:30p	CL50 224 \rightarrow LLY 1105

Purdue University Student Sectioning

- Student Course Requests (existing students)
- Before a timetable is made
- Requested courses, free times, priorities, alternatives, wait-list?, ...
- Course Timetabling (existing students)
- Student conflicts are considered
- Last-like term enrollments + course requests from existing students
- Batch Sectioning
- Sectioning of pre-registered students
- Real-Time Sectioning (existing students + incoming freshmen)
- Incomming students, changes of already sectioned/enrolled students
- Changes in course timetable
- Processing of wait-lists

Wk-1	Wk 1	Wk 2	Wk 3	Wk 4	Wk 5	Wk 6	Wk 7	Wk 8	Wk 9	Sp B	Wk 10	Wk 11	Wk 12	Wk 13	Wk 14	Wk 15	Wk 16
	Cur Space Req						LLR R	equests	LLR Sc	hedule	Dept/L	ab Sche	dules				
	List Offerings		Student Preliminary Schedule Requests							tinued Requests				eal-Time Scheduling			

Important Aspects of Student Sectioning

- Reservation of space for expected (incoming) students
- Based on last-like term enrollments
- In each section, a given number of spaces is reserved for new students
- These reservations are updated as the students are enrolled into classes
- To avoid student conflicts by individual class time choices
- E.g., students A and B each require courses 1 and 2, section a of each course meets at the same time
 Class Time Periods

Important Aspects of Student Sectioning

- Students still need to have some choice (course requests)
- Course priorities
- Free time requests
- Alternative course requests
- Wait-lists

Primary Course Requests

Type			Course / Free Time					Waitlist 1st Alternative Course					2nd Alternative Course	
1.	Free Tim		3×50	\checkmark	MWF V	7:30a-8:20a	\checkmark							
2.	Course	\checkmark	ENGL		106R V			\square	ENGL		108R		\checkmark	\checkmark
3.	Course	\checkmark	BIOL	\checkmark	110 v			回		\checkmark	\checkmark		\sim	\checkmark
4.	Course	\checkmark	MA	\checkmark	153 v			\square	MA	\checkmark	159		\checkmark	\checkmark

Alternative	e Requ					Add Alternative Request	
A1. Course \checkmark	LATN \checkmark	101 V	\square	\checkmark	(V)	\checkmark	\checkmark

Important Aspects of Student Sectioning

－Students still need to have some choice（online sectioning）
Solution

```
1. Free Time MWF 7:30a-8:20a Full Term
2. ENGL 106R
    \square Lecture T 9:30a - 10:20a Full Term HEAV 108
                Sel Que Time Instructor Requires
            M 8:30a-9:20a
            \square M:30a-10:20a
            \ M 10:30a-11:20a
            \square M 3:30p-4:20p
                \square T8:30a-9:20a
            (9) }\squareT9:30a-10:20
                \square T 11:30a-12:20p
                \square T1:30p-2:20p
                        sections
```

```T11：30a－12：20p
\(\square\) T \(3: 30 \mathrm{p}-4: 20 \mathrm{p}\)
```

```
        田 Lecture F 9:30a - 10:20a Full Term HEAV 108
            Queue me for W 10:30a - 11:20a (requires Lecture M 10:30a - 11:20a)
                \boxplus Lecture Th 9:30a - 10:20a Full Term WTHR }21
                    Queue me for F 10:30a - 11:20a (requires Lecture W 10:30a - 11:20a)
                    ⿴囗 Recitation M 9:30a - 10:20a Full Term HEAV 225
                    Queue me for T 10:30a - 11:20a (requires Lecture F 10:30a - 11:20a)
                    Queue me for Th 10:30a - 11:20a (requires Lecture F 10:30a - 11:20a)
```


Important Aspects of Student Sectioning

- Reservations
- Academic area / major / minor reservations
- Group reservations (learning-communities)
- Individual reservations
- Can be set on a course or on a particular class (or set of classes)

A\&AE 203 - Aeromechanics I (105)

	Type	Reserved	Requested	Projected	Last Term
Academic Area	67	67	67	65	
Aeronautics and Astronautics	3	3	3	3	
Electrical \& Cmptr Engineering	27	27	27	27	
First Yr Engineering	1	1	1	1	
School of Liberal Arts	2	2	2	2	
Science	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{9 8}$	

Demonstration

Conclusions

- Course Timetabling
- System used for LLR problem from Spring 05 schedule
- University-wide from Fall 07 schedule
- Student Sectioning
- Planned for Fall 08 / Spring 09
- More Information
- http://www.smas.purdue.edu/research

